Heterogeneous Specifications and their
Application to Software Development
A Research Proposal

Richard F. Paige
Department of Computer Science, University of Toronto
paige@cs.utoronto.ca, http://www.cs.utoronto.ca/~paige

October 12, 1995

Abstract

We describe a course of research examining formal and semiformal heterogeneous specifica-
tions, i.e., compositions of partial specifications written in different textual and visual notations.
We describe why we believe this to be an interesting topic for further inquiry, and suggest why
such specifications might prove beneficial for use in software development.

1 Introduction

Formal specifications are starting to become more widely used in the development of programs. As
software designers begin to investigate how formalism might be applied to their work, they soon
discover the wealth of specification notations and methods that are available. They must come to
grips with deciding which (if any) notations or methods to utilize in their work.

Semiformal specifications have been used for many years in program development. These are
notations and concomitant methods—possibly with a partially or unspecified formal semantic basis—
which prove attractive to designers for many reasons, perhaps the most significant being that the
semiformal notations are often easier and cheaper to apply than formal ones.

There have been many formal specification notations (and formal methods) described in the
literature. The first usable formal method was Hoare logic [Hoar69]. Weakest preconditions [Dijk76]
have been used for program verification with success. The refinement calculus ([Back78], [Morg94])
is a rigorous approach to program design, based on a mathematical notion of refinement. Z [Spiv&9]
and VDM [Jone90] have met with some success in both subsidiary support and central construction
programming roles. And predicative programming [Hehn93] is an alternative to the refinement
calculus with a simpler semantics and definition of refinement.

There have been at least as many semiformal specification notations (and methods) as formal
ones described in the literature. Examples include data flow diagrams, structure charts, Structured
Analysis and Design [DeMa79], Jackson Structured Design [Jack81], and so on.

It is our suggestion that much can be gained from using both formal and semiformal notations
and techniques in composition when constructing programs. Specifications written using multiple
notations are called heterogeneous:

Definition 1 A specification is heterogeneous if it is a composition of partial specifications written
in (two or more) different notations.

www.manaraa.com

The benefits of studying such approaches to specification would include the potential for:

e obtaining more flexibility in the application of both formal and semiformal notations and
techniques to software development;

e smoothing the integration of formal specification notations into development methods;

e reducing the semantic gaps [PHG91] that arise in a development due to the use of an integrated
formal notation;

e constructing a “catalogue” of the relative expressiveness and limitations (both syntactic and
semantic) of notations.

There are also several caveats to be kept in mind about using a heterogeneous approach:

e For a given problem, it may be more difficult to simultaneously employ multiple notations
instead of a single notation.

e It may not be cost or time-effective to take up the use of multiple notations in an attempt to
solve a problem.

e It may be difficult to determine a heterogeneous decomposition for a given set of functional
and nonfunctional constraints.

In order to accomplish heterogeneous use, and to hopefully obtain the aforementioned benefits
(while answering the caveats listed above), it is necessary to explore several questions:

1. How are the various formal and semiformal notations for software development related?

2. What kinds of theorems, development rules, and heuristics can we derive to assist us in using
heterogeneous specifications?

3. What is the effect of using heterogeneous specifications within existing software development
methods?

In this proposal, we discuss some of the important ideas and problems to be considered when
attempting to answer such questions. We present further detailed sub-questions that need to be
considered, plus a description of how we plan to attack these questions. In an Appendix, we also
describe some preliminary research results, and discuss how we hope to extend them. In a second
Appendix, we present several examples of heterogeneous specifications and show how they might
be used in development.

We assume enough of a familiarity with the formal and semiformal methods described above to
understand a fairly high-level discussion. We suggest consulting [Paig94] and the other references
for further details.

Formal methods have experienced only limited use in “realistic” programming situations. By
showing how the development notions used in formal and semiformal methods can be combined,
we may further promote the use of formal methods in those design situations where they may be
most needed.

www.manaraa.com

2 Research Directions

We propose a plan of research that will have the following scope and approximate chronological
course. The most significant part of the work will be tied up in Parts 2 and 3.

1. Identify a collection of formal and semiformal notations for study.

We propose to examine selections from the following:

e formal: the refinement calculus, Z, VDM, the predicative notation, weakest precondi-
tions, CSP [Hoar85], Hoare logic, functional notations (e.g., CIP-L [Part90]), algebraic
specifications and Larch [Gutt93].

e semiformal: data flow diagrams, entity-relationship models, transition diagrams, Jackson
diagrams, program description languages, subsets of programming languages, structure
diagrams, object-oriented notations, and decision tables.

It is expected that the emphasis of our work will be on the italicized notations.

2. Compare and unify the selected notations to form a heterogeneous framework.

This will involve:

e Translating specifications from one formal notation into a second formalism.

e Giving a formal semantics to the semiformal notations. We will have to determine in
each case the formal notation(s) to use in giving the semantics®. Since in carrying out
such formalizations we may have to place an explicit reading on otherwise semiformal
notations, we likely will have to evaluate the various interpretations to see which is the
most appropriate and general for heterogeneous use.

ASIDE. The results of these first two steps give us a framework within which we
can use multiple notations in writing specifications. The next stages focus on refining
the framework so as to obtain a better understanding of when different notations can

or should not be used. END OF ASIDE.

o Identifying the relative expressiveness of both formal and semiformal notations. For
example, we can express both angelic nondeterminism and havoc in the refinement cal-
culus, but cannot do so using the predicative notation. Here, we might also examine
the effects of extending notations to include previously unrepresentable specifications
(if indeed such enhancements are possible). By examining such notational limitations,
we provide ourselves with a better idea of when certain combinations will be beneficial,
since we will have more of a clear picture regarding the facilities—both syntactic and
semantic-which are lacking in each notation.

o Attempting to see if the so-determined “less expressive” notations are significantly less
expressive (i.e., do the specifications that cannot be expressed in a particular notation
allow us to describe systems that cannot be easily represented using other means? Do
they demonstrably simplify program development?)

Preliminary results regarding these issues are discussed in Appendix A.

"We can use formal heterogeneous specifications here if it seems worthwhile.

www.manaraa.com

3. Ezamine methods for expressing, manipulating, and refining heterogeneous specifications.

More precisely:

e Develop theorems and rules for heterogeneous specification manipulation, especially re-
garding;:

— specification refinement: monotonicity, transitivity, partwise, casewise and stepwise
refinement theorems for heterogeneous specifications.

— heterogeneous development: extending a refinement relation to new notations and
compositions of notations. This allows a development process to be heterogeneous,
i.e., it allows developers to use multiple refinement relations and notations in devel-
opment. This is discussed more in Appendix A.

— data refinement.

— transfers of context between partial specifications in different notations: viz., how
should it be done?

— satisfiability and feasibility of heterogeneous specifications.

— formalization by parts: this is a notion of specification formalization analogous to
refinement by parts. To formalize a semiformal specification by parts means to
formalize subspecifications of interest while leaving all other parts unchanged. We
wish to develop this notion for various semiformal notations, for it has the possibility
of being very useful for when we want to obtain restrictions on the use of a formal
notation. Dually, we may want to examine “unformalization by parts”, too.

e Discuss some examples of compositions and how they can be applied to various pro-
gramming situations. Instances of this might include:

— compositions of C code and formal specifications. This would allow programmers to
include C statements like printf ("%4d\n",a); in formal specifications. This might
be worthwhile since it could reduce the semantic gaps between specification and
implementation notation and might make the formal specification notation more
attractive to programmers. Furthermore, this would also allow (in certain cases)
formal refinements to C code. These issues are discussed in more detail in Part 4.

— compositions of data flow diagrams (or other graphical notations) and formal spec-
ifications: when are they feasible, and—notationally—how is it accomplished?

— high-level descriptions of software architecture via heterogeneous specifications.

e Examine criteria for suggesting whether or not a composition of notations might prove
to be beneficial. We might base this on: (a) the simplicity of combined use (with respect
to refinement and semantic definitions); or (b) the expressiveness of combined use. We
will also have to examine the basic notion of when notations can feasibly be combined in
order for us to be able to attempt to examine when they can be beneficially combined.

e For semiformal notations, determine if there are non-trivial notions of semiformal refine-
ment. Since we are able to give a formal semantics to certain semiformal notations, we
can perhaps extend the refinement relations of various formalisms to these semiformal
domains. We will need to develop theorems describing how to use these extended rela-
tions. For example, it should be possible to formalize the notion of data flow diagram
refinement in various situations.

e For semiformal notations, determine specification combinators. For the diagram-based
notations, examine the notion of “diagrammatic composition” (i.e., if we have a formal

www.manaraa.com

semantics for a diagram, we can, theoretically, compose it with another diagram. How
should we denote such compositions?)

e Examine the construction of a small visual notation (e.g., see [HarD88]) for representing
formal specifications. Such a facility will be important for facilitating the composition
of diagrams and formal specifications, and may be useful in itself for its capability of
expressing formal specifications visually. We will consider the use of a higraph-like
notation here.

ASIDE. We should clarify now that the emphasis of our work 1s not on the transla-
tions developed in Section 2. We are much more interested in the actual heterogeneous
specifications themselves, how they are created, and how they can be used. Development
of the translations is, of course, necessary in order to make our presentation concrete, but
the role they play in our work is secondary to that of the specifications and compositions

themselves. END OF ASIDE.

4. Fxamine the effects of heterogeneous specifications on existing development methods.

There are two particular cases of this which interest us (although all permutations will be
examined in some way):

o Formal-formal compositions: How does our ability to compose specifications in multiple
formal notations affect a software development method that is or can be based on one
of the notations? (This would be partially answered in the preceding section.)

o Semiformal-formal compositions: How does our ability to compose semiformal and for-
mal specifications affect a development that is based on the semiformal notation? For
example, if we can compose Jackson diagrams with predicates—or, equivalently, a visual
formalism used to represent predicates—how does our use of JSP or JSD change when
we use the compositions in development? Can we introduce compositions in such a way
so as to reduce the semantic gaps that arise between the phases of the development
process?

It is this last instance of heterogeneous specifications which strikes us as quite interesting.
It may be possible-by using heterogeneous specifications and, in particular, semiformal and
formal compositions—to make formal methods more acceptable to the industrial programmer.
By demonstrating how the use of mathematics-based methods can be combined with the
use of current (and future) software development techniques and semiformal notations, we
make our formal methods more viable, in the sense that the use of the formal method will be
restrictable’ and may be integrated into an existing software development process.

By considering heterogeneous semantics in this context, we essentially attempt to answer two
important questions:

(a) How can we integrate a formal method into a software development method?

(b) How can we obtain more flexibility in using a formal method in realistic software con-
struction situations?

Question (a) has been considered to a degree by others; for example, see [SFD92] or [PHGI1].
The former work examines formal and informal integrations of Z, VDM, and algebraic spec-
ifications with Structured Analysis and Design. The latter paper considers metamorphic

2The method need only be used when desired (or necessary) in a particular problem.

www.manaraa.com

programming. We propose attempting to formulate answers to (a) and (b) via the route of
heterogeneous specifications, and in doing so hope to minimize some of the complexity and
expense of applying formal methods in large-scale software construction. In the process, we
also hope to examine issues of reuse, maintenance and evolution, and restrictability.

ASIDE. One perspective on the work we are describing is that it is part of an attempt
to fit program design calculi into software development processes. This problem (which is
closely related to formal specification integration [SFD92]) has received limited discussion
in the literature. There are several ways in which one might think of carrying out such an
integration. The ideal place in a standard model of software development to perform the
process 18 in the specification and design phase. This introduces some problems:

e The transition from the notation used in analysis to the formal notation used in spec-
ification and design will be complicated. Significant semantic gaps arise.

e The formal specification used in the design phase must adequately describe the soft-
ware architecture specified in the analysis phases. Unfortunately, many program design
calculi notations are poor at making such descriptions (mostly due to the unimple-
mentability of certain specification combinators, and the lack of abstraction mecha-
nisms).

e With such an integration, making the transition to code is in many cases prohibitively
costly, since expensive formal refinements (with or without detailed proofs) must be
carried out.

Our attempt to (partially) solve these problems is based on not using only one notation in
specification and design, but rather several simultaneously: (at least) one formal notation
in arbitrary composition with project-specific semiformal notations.

Ideally, we want to be able to write specifications with arbitrary intermixings of for-
mality and semiformality. Currently—without allowing compositions—we typically use only
the two extreme cases of intermixing: formal specifications; and semiformal (or even infor-
mal) specifications. By allowing arbitrary compositions, we can reach the middle ground
between the two extremes, which should prove eminently useful when used in large-scale
development. END OF ASIDE.

One of the key ideas to keep in mind is that designers should not be restricted in terms of
the notation they choose to use for specification and development: they should be able to
use whatever notations (and development methods) they need—providing that the notations in
question can be formalized®! From our point of view, there is no single programming language
or formal specification notation or semiformal notation that should always be used when
developing software. While there may always be a core notation or development method used
in a particular setting, circumstance and developer experience should dictate the notations
and development processes which are to be used for each task.

5. Ezamples

We hope to attempt a case study—perhaps one large, or several small examples—of how to
use heterogeneous specifications in development. We plan to pay particular attention to the
role that refinement plays in developing the heterogeneous specification. Three fairly simple
examples are presented in Appendix B.

3Of course, predicated on other design constraints.

www.manaraa.com

3 Related Work

Our notion of heterogeneous specification might have first arisen with the work of Hehner and
Malton [HeMa88] on comparative semantics, and Dijkstra [Dijk93] and Hoare’s [Hoar94] work on
theory unification. In turn, these works have their roots with multiparadigm languages [Hail86],
and wide-spectrum languages (e.g., see [Part90]). The terms compositional specification and multi-
paradigm specification (both of which are closely related to our heterogeneous specification) received
recent notice with the work of Wing [Wing90] and Zave and Jackson [ZaJa93]. Abadi and Lam-
port’s [AbLa93] transition-axiom method offers an approach similar to Zave and Jackson’s—in that
both offer a common semantics that can serve as a framework for many different notations—but the
former’s efforts are focused on concurrent systems, and are not intended to facilitate multiparadigm
specification. Astesiano and Cerioli [AsCe93] describe an initial attempt at providing a foundation
for multiparadigm specification.

Related to the compositional or heterogeneous specification notion is the concept of method
integration—combining two or more methods to form a new, hopefully more useful technique.
[SFD92] contains a good overview of (informal) integrations of Structured Analysis with VDM,
Z, and other formal notations. [Kron93] is a general overview of method integration.

Zave and Jackson (whose work is closest in spirit to our own) take something of a different
approach to specification composition than we do: while we are concerned with semiformal specifi-
cations and the effect of compositions on development methods, they are focused more on semantic
definitions and consistency. Their work is also typically intended for use with a particular class of
problems; our approach is apparently more general. One of the main distinctions between their
work and ours is that they translate all notations into a new (and very general) notation, whereas
we recognize that it is very likely that any heterogeneous specification will make use of only a few
notations—for reasons of manageability. Under this premise, we can take one of three courses of
action:

1. Translate all partial specifications in the composition into the most expressive—though not
necessarily the easiest to use—notation.

2. Translate all partial specifications in the composition into the notation in which we want to
carry out refinement and development, and therefore restrict our use of notation specifically
to the translatable elements in each formalism.

3. Develop theorems and rules that allow us to carry out refinements (both formal and semifor-
mal) over compositions.

Our work will focus on 2. and 3.

Zave and Jackson offer a further piece of motivation for considering heterogeneous specifications:
such notions make it possible to use much simpler specification languages than what are now
considered to be state of the art. There seems to be two reasons for this: (i) if we can compose
a number of languages freely, there is no need to extend a language with features that another
has; and (ii) a heterogeneous framework subsumes and can replace features-such as composition
operators—found in many languages. For these and other reasons, we consider it worthwhile to
examine heterogeneous specifications.

www.manaraa.com

4 Conclusions

We have proposed a course of research examining heterogeneous specifications and their use in
software development. We have identified several important problems that should be discussed,
and have suggested some general approaches for attempting to solve them. We have also described
several of the fundamental issues associated with heterogeneous specifications in general. Finally,
we have provided (in an Appendix) initial research results related to formal and semiformal het-
erogeneous specifications, and (in a separate Appendix) examples of heterogeneous specification
and development. Much work remains to be done, concentrating on expanding the results pre-
sented herein, extending the results to further semiformal domains, and integrating the results into
the software development processes associated with the notations. Work has begun on studying
these topics, especially with respect to the semiformal notations, such as those used in JSD and
Structured Analysis. Hopefully, our results will show that heterogeneous specifications can be used
productively in constructing programs.

A Initial Research Results

In this Appendix, we briefly recount some of the initial research results we have obtained. Space
prevents us from including all the details and, indeed, all the results we have determined. Instead,
we summarize a few of the most interesting of the preliminary findings, and leave the remainder
for another time®.

In order to avoid complications, we assume throughout this appendix that all notations use
the unprimed-primed convention of Z and predicative programming to represent initial and final
variables.

A.1 Comparative Semantics

Here, we describe some of our initial findings with respect to comparing the semantics of several
formalisms. In other words, we show how a few formal notations—Z, VDM, the refinement calculus,
weakest preconditions, and the predicative notation—are related. This is the first step towards
allowing these formal notations to be used in composition.

Our research plan includes further examination and development of this material. We also
plan to extend the comparative semantics to other domains, including both formal and semiformal
notations.

A.1.1 Predicates and specification statements

Let frame w e P be a predicate specification (as in [Hehn93]) not involving time, i.e., there will
be no references to the time variables ¢ and ¢’ in P. We require that the programmer specify the
frame w.

The specification frame w e P is translated to the specification statement

w: [V' e P, P]

under an appropriate syntax-directed translation. The translation is approximate since P does not
talk about time while its specification statement translation does (in a restricted sense, although

“Say, a thesis proposal. ..

www.manaraa.com

for every P there is a refinement calculus translation). The precondition in the translation is true
for all prestates from which P must terminate.

ASIDE. In order to complete our translations with these two notations, we must also deal
with predicate specifications mentioning time. While we have determined such a translation,
we omit it here. We also plan to examine more thoroughly a simpler version of the translation
described above, with which we lose our ability to talk about nontermination but acquire less
complicated manipulation rules. END OF ASIDE.

The reverse translation is easy to describe. Providing that the specification statement is not
angelic®, the specification statement w : [pre, post] is almost the same as:

frame w e (pre = post).

The “almost” is due to the fact that the predicative notation cannot be used to write angelic
specifications®, while the specification statements have this capability (demonic specifications are
permissible in both). Furthermore, we lose a bit of information in the translation and are no longer
able to talk about time in the predicate formulation. This can be eliminated by transforming to
predicate specifications that include time descriptions, or by including a boolean variable in the
translation used to indicate termination, or lack thereof.

A.1.2 Refinement calculus and weakest preconditions

The mapping from specification statements to weakest precondition predicate transformers is well-
known: Morgan gives a weakest precondition definition of specification statements in [Morg94]. The
reverse transformation is somewhat more complex and is derived from [HeMa&8]. We simply present
the translations, and direct the reader to the references for further information and examples (~
should be read as “is translated to”).

wp(w : [pre,post |, R') = pre A (Vu' @ post = R),
wp(S, R ~ a:[wp(S, true), (mwp(S,a’ £ ap))[a’/ao]],
where avis a frame of variables determined by the programmer, with ag not in «. (For the calculation

of wp in the postcondition, the ag are the variables.) Recall that wp(9,true) is the weakest
precondition for the existence of a time bound.

ASIDE. Tt is also possible to translate between predicative programming specifications and
weakest preconditions. A predicate specification S can be mapped to the weakest precondition

wp(S, R') =Vo' o (S = R').
Given a weakest precondition wp(S, R') over state o, it can be translated to the predicate
(mwp(S, 0" # 00))le’ /o],

where oq is not in ¢. This latter translation, unfortunately, is not one-to-one: abort and havoc
are both mapped to T, while any angelic specification is mapped to its demonic dual. END OF
ASIDE.

®The basic angelic specification is the angelic update {R'} (for predicates R'), which satisfies wp({R'}, Q) =

Jdo’' o R' A @' for all predicates @Q'.
SInterestingly, the mapping from specification statements to predicates transforms an angelic assignment into a

demonic assignment. Thus, we can remove our restriction on not translating angelic specifications, providing that we
do not mind our translation being given a demonic interpretation.

www.manaraa.com

A.1.3 Refinement calculus and VDM

We now describe a relationship between the refinement calculus and VDM. We start by assuming
that there is a syntax-directed translation between notations; such a mapping is not difficult to
construct”. The translation from VDM pre- and postconditions to specification statements is then
immediately obvious:

pre P, post Q ~ a :[P,Q],

for a frame « specified by the programmer. In fact, under syntax, this mapping is almost invertible;
the postcondition) in the mapping from the refinement calculus to VDM may contain appropriate
frame axioms (although this can be subsumed by using the VDM equivalent of frames).

A.1.4 7 and the refinement calculus

The final set of translations we describe are between 7 and the refinement calculus. One direction
of the translation has been noted in the past [King90]; we merely summarize these results here.

The mapping from a Z schema to a refinement calculus specification statement is quite straight-
forward and was described in [King90]. There is first a syntax-directed translation from Z schemas
to an intermediate form (mapping primed variables to unprimed variables, etc.). Then, the Z
schema

Op ==[AS;i?7:1;0': O | pred |
can be mapped into the following specification statement:
w: [(Fw' : T | inv e pred)[w'/w], pred],

where inv is a state invariant obtained from the A schema in the declaration of Op, and w consists
of variables in S together with the outputs. See [King90] for more details.

The reverse mapping (from the refinement calculus to 7Z) is less straightforward, since it has to
be left to the programmer to decide how to decorate variables (as input or output) in the resulting
schema, which variables to declare in the current schema, etcetera. However, supposing that this
can be done, the specification statement w : [pre, post | can be translated to the following schema
(ignoring input and output decorations):

S = [Zp; Aw | pre A post |.

In the schema, p is the set of all scoped variables notin the frame. Since the specification statement
does not contain declarations, further declarations are not needed in the Z equivalent (although the
variables will have to be declared eventually). This mapping holds under an appropriate syntax-
directed translation. Notice that 7 cannot express magic, i.e., 7Z specifications must be feasible
(unless we extend schemas to include pre/post pairs, which we will consider another time).

ASIDE. With the translations all defined, we might like to know something about their
mutual consistency, i.e., as a set, do the translations provide consistent results when applied to

the same specification? While we do not pursue this question here, we plan to examine it in

detail another time. END OF ASIDE.

"We do not use the logic of partial functions basis for VDM in these translations.

10

www.manaraa.com

A.2 Heterogeneous Specifications

We have shown how to translate—as much as possible-between the five formalisms shown in Figure 1.

Predicative programming

|

w:[pre,post] —~—— wp(Y,R)

|

Z

VDM

Figure 1: Notation translations

Thus, for (almost) any specification S in one notation, we can express S in (almost) any of the
other notations we have mentioned. We now sketch how this facility allows us to use heterogeneous
specifications in programming.

In each of the notations mentioned, there is a collection of specification combinators—operators
for combining specifications in various ways. For example, sequential composition, disjunction and
conjunction are all widely-used operators, though not present, nor given the same interpretation in
each of the formalisms mentioned.

Since we now have a way of expressing specifications from one notation in another notation, it
becomes possible to extend the domain of defined operands of the combinators to include specifica-
tions written in different notations.

For example, let P be a predicative specification. Then the specification

P;w : [pre, post | (1)
can be given the following predicate semantics:
35" e P, A (frame w o (pre = post))%u,

where the sub- and superscripts indicate that the subscript variables are to be substituted for the
superscript variables. We could also give a semantics to the dependent composition by expressing
P as a specification statement (although we will not obtain exactly the same interpretation, in
general). This would be accomplished by using the following result.

Theorem 1 Using ; to denote sequential (relational) composition, the following relation holds:
w: [preg, posty J;w : [prey, posty] = w: [preg AVw' e (posty = prej[w/w']), posto; post;].

This result is quite useful. We would use it to investigate when the predicative and refinement
calculus semantic bases provide different or identical interpretations.

The fact that we have described translations between notations means that we can write for-
mal specifications as a composition of partial specifications in arbitrary (formal) notations. If one
particular notation (say, Z) is useful in specifying one part of a problem, but predicative program-
ming is useful in another part, it is considered to be perfectly acceptable to use both notations in

11

www.manaraa.com

composition. Of course, such compositions may not always prove to be beneficial; such judgments
will depend upon both functional and nonfunctional constraints.

Such compositions may potentially make a design calculus, like predicative programming, even
more usable in programming-in-the-large situations, since they can be combined with formal spec-
ification notations like Z which are very useful when applied in a subsidiary support réle. Hetero-
geneous specifications allow us to restrict how we apply a calculus to solving a problem. This is
crucial when we are using such a facility for programming in the large.

We now present some useful theorems describing properties of the refinement relations < (of the
predicative methodology) and C (of the refinement calculus) when applied to certain heterogeneous
specifications. We begin by giving a formal definition for refinement in both cases, using a wp basis
for the refinement calculus. In the following theorems, let P and () be predicate specifications
(assuming that both specifications start with frame) and S and T be specification statements.

Definition 2 A specification P is refined by a specification Q if
Vo,0' e (P < Q).
Definition 3 A specification S is refined by a specification T (written S T T) if
VR e wp(S, R') = wp(T, R).
Theorem 2 If SC T then PANSC PAT.

Theorem 3 Let preds and predr be the predicate specification equivalents of S and T (assuming
S and T are not angelic). If Vo, o' e (preds < predr) then PV SC PV T.

Theorem 4 If SC T then P;SC P;T.

It turns out that the theorems we have shown are useful special cases of two general theorems on
refinement over heterogeneous specifications. In the following, let P and @ be in one notation (say,
N), with P and Q their translations into a second notation, say N. Assume that the translations
of P and Q into P and () are information preserving, i.e., P and P have equivalent definitions in
a formalism at least as expressive as N and N. Let o be a combinator of N over which partwise
refinement can take place, and let S be a specification in any notation whatsoever. Finally, let C
be a reflexive and transitive refinement relation. The proofs of these theorems follow directly from
the assumption of monotonicity, and the definitions.

Theorem 5 If P C) and C is monotonic over o, then PoS C Qo S.

Theorem 6 Suppose C is not monotonic over o, but there ewists a refinement relation C in N
which is monotonic over o. If PC () then PoS T Qo S.

What these theorems tell us is that the monotonicity and transitivity of <= and C are almost
completely preserved and we can apply the appropriate refinement relation to the appropriate
notation over a composition without a corresponding change of notation, in most cases. Even when
we are required to change notation, the transformation is (almost) completely syntactic (i.e., from
w : [pre, post | to frame w e (pre = post)) and in doing so, we move to a notation with a simpler
notion of specification refinement (i.e., boolean implication). From a practical viewpoint-and in
terms of refinement—the change in notation is justifiable.

12

www.manaraa.com

We previously mentioned the notion of a heterogeneous development, where refinement steps in a
derivation can be performed in different notations. In other words, at each stage in a development,
we are able to use whatever notations or refinement relations we so choose. A preliminary result
along this line is the following one.

Theorem 7 If pre AVo' e (post = P) then frame we P < w : [pre,post | and frame we P C
w : [pre, post .

We envision expanding this concept to other formal and semiformal notations, so as to obtain
more freedom in developing programs heterogeneously.
Another useful result regarding heterogeneous development is the following.

Theorem 8 If S C T thenVo,0'eS < T.

In Theorem 8, S and T are specification statements, so in the consequent there is an implicit
translation into predicates. The immediate impact of Theorem 8 can be seen in its effect on
Theorem 3: PV SC PV T also holds if S T T.

We now briefly consider an interesting special case of formal heterogeneous specifications in
order to explore some of their features. To be more specific, we consider the problem of adding
so-called specification constructors to the refinement calculus.

This problem was examined by Ward [Ward93], who considered adding generalizations of Z
schema conjunction and disjunction operators to the refinement calculus. The rationale for con-
sidering this extension was to facilitate the construction of large specifications from smaller ones.
A problem with Ward’s work is that the specification combinators of Z are not monotonic with
respect to the refinement relation C (we can easily prove this using heterogeneous specifications).
We take a slightly different approach-that of heterogeneous specifications—and (mostly) preserve
the property of monotonicity.

Our goal here is to give a semantics to expressions such as:

w: [pre,post |V a : [pre’, post’],
w: [pre,post | Ax : [pre’, post’].

We do this by interpreting V and A as logical disjunction and conjunction, respectively, and
transform the specification statements into their equivalent predicate form. We perform manipu-
lations and then reverse the transformation. By doing so, we obtain some useful results. Before
presenting them, we make a definition, taken from [Ward93].

Definition 4 A specification statement is frame complete if its frame consists of all variables
mentioned in the pre- and postcondition.

It is easy to make a specification statement frame complete by using the law Fapand Frame
from [Morg94]. With this definition in mind, we now present some theorems (omitting all proofs).
In the following, let S = w : [prey, post,, | and T' = z : [pre,, post,].

Theorem 9 If neither S nor T are angelic, then

SAT =w,z :[(pre, A —Vuw' e post,)V (pre,; A —Va' e post,), (pre, = post,) A (pre, = post;) .
13

www.manaraa.com

Theorem 10 If neither S nor T are angelic, and w = z then
SVT =w:[(pre, A prez) A =Vuw' e (post, V post,), (pre, = post,) V (pre, = post,)].
In Theorem 10, we are assuming that the frame describes exactly the variables of interest.
Theorem 11 If S is frame complete and not angelic then

=S = w: [pre = Jw’ e post, pre A —post].

Further theorems and properties have been determined (especially regarding partwise refine-
ment), and we plan to compare our results with those of [Ward93] to discover respective strengths
and weaknesses.

ASIDE. In work we do not present here we investigate a simpler (yet slightly less expressive)
translation of predicates into specification statements. This translation leads to results different
from those presented above. Part of our work will entail an evaluation of both translations. Our
investigations to date suggest that the loss of expressiveness is not significant and we hope to
present evidence to support this hypothesis. END OF ASIDE.

Space prevents us from including all the details (and proofs of our results), but part of our
general plan includes expanding our results to further formal domains, and generalizing to allow
compositions with semiformal specifications. We have already begun to examine such issues, as we
now mention.

A.3 Semiformal Specifications

We (very briefly) present a summary of a few of our findings with respect to work on: (a) giving a
formal semantics to various semiformal notations; and (b) describing the changes that the ability
to use heterogeneous specifications place on any associated development process. Our descriptions
are necessarily brief and omit all of the formal details.

A.3.1 Structured Analysis/Design-related Results

e Data flow diagrams can be formalized in Z [SFD92] or in the predicative notation (placing
an interpretation on the diagram as operations on a state). This can typically be done in
combination with control flow diagrams and the data dictionary. In fact, we have found
that a useful extension to the data dictionary concept in such integrations is to include
data transformation details. These formalization details will be helpful when we consider
compositions of data flow diagrams with formal specifications, and in integrating the formal
notation into SA/SD.

e [t is also possible to extract a data flow diagram (with a particular interpretation) from certain
7 specifications. We have also considered extending this notion to extraction of higraph-based
specifications, or dependency trees based on Z schema interconnections, so as to reduce the
information loss in the process.

e Entity-relationship diagrams can be expressed in 7Z [SFD92] or in the predicative notation.
Particular care has to be taken with ensuring that the various relationships (many-to-one,
one-to-one, etc.) and “opting in and out” of a relationship are properly described.

14

www.manaraa.com

e The development process for Structured Analysis (based on the aforementioned diagram nota-
tions) needs to be changed, to include mention of: (a) proofs of data flow diagram refinement;
(b) inclusion of formal specifications in the data flow diagram; and (c¢) the transition from a
standard or heterogeneous data flow diagram to a formal specification or another (formal or
semiformal) diagram paradigm.

e We have commenced preliminary study on heterogeneous specification integration into the
SADT methodology, concentrating on: diagram alterations, changes to the modelling process,
and augmentation of the iterative review process to include new notations. More work remains
to be done, including considering how heterogeneous specifications should be presented to a
technical review committee (e.g., possibly as SADT box abstractions).

A.3.2 JSD results

e Process connections can be formalized. In doing so, we have chosen to use predicates, but this
requires a notation extension to add a program counter to the semantics (we are investigating
if this can be avoided). The details of this remain to be completely worked out; furthermore,
we have to evaluate if it is worthwhile to make such a formalization.

e Jackson diagrams and structure text are straightforward to formalize (although some of the
loop-constructs result in complex specifications).

e Work remains to be done on exploring the changes to JSD that occur after adding hetero-
geneous formal specifications at both the visual and textual levels, especially with respect to
how the interface with the “real world” (as described in [Jack81]) must be dealt with.

A.3.3 Programming languages and PDL results

We have commenced the determination of a formal semantics for various programming language
subsets. Our goal is to allow the use of subsets of certain real programming languages in composition
with formal specifications. Not only does this allow us to restrict the use of a program design
calculus, but it also permits us to carry out refinements to the level of (real) programming language
code. In particular, we plan to consider C and C++. For C++4, we expect to come up with predicate
specifications for (some of) the object-oriented constructs in the language. Another approach would
be to integrate algebraic types (e.g., as in CIP-L) into a predicate-based formalism. Of course, the
extent to which we consider such compositions and integrations will be dependent on the utility of
such descriptions.

We have also developed a formal semantics for a typical program description language, and
hope to be able to use this in composition with formal specifications. Such compositions will prove
helpful when examining integrations of JSD and formal specification-based techniques.

A.3.4 Other results

We briefly summarize some of the other general research results we have (partially or completely)
obtained.

e We have commenced work on combining JSP and Structured Analysis through heterogeneous
graphical specifications. Work remains to be done on extensions to the methodological aspects
of the resulting composite technique.

15

www.manaraa.com

e We have been attempting to understand how to integrate formalization by parts into the
framework, for use in writing and composing specifications which involve large diagrams (or
large formal texts).

e We have determined how to extend a predicative parallel composition operator to the refine-
ment calculus and Z. We will need to evaluate the utility of the operator when compared
with, for instance, action systems [Back90].

e We are examining how to use a topovisual formalism (inspired by higraphs) to depict both
large and small formal specifications. We need to understand how to describe text-based spec-
ifications in a visual manner in order to use them in composition with other visual notations,
such as data flow diagrams. Our initial work on “higraphs” suggests that they will prove to
be convenient for heterogeneous use, and for formalizing many of the structural aspects of
large formal specifications. Our notation allows us to depict data and control flow (along with
more abstract relationships), as well as structure and hierarchy, and permits us to abstract
away as much detail in the specification as is necessary. See [Paig95] for more details.

e We are studying how to use heterogeneous specifications in nonlinear development processes
(e.g., see [PHGI1]). In such situations, it may be easier to “reverse engineer” specifications
from implementations, due to the heterogeneous nature of the final specification. This might
prove to be useful in allowing designers more flexibility in developing software.

This is only a brief summary of some of the results we have determined; many of the details
(especially regarding Part 4 described in Section 2) and more useful examples remain to be worked
out. Extension of the approach to SADT, SSADM, and other semiformal notations and methods
must occur, too, although we should add that we have many of the preliminary details so far.

B Examples

In this appendix, we consider three examples presenting the use of heterogeneous specifications
in development. The first example-which focuses on integrating predicate specifications with a
structured method—demonstrates an instance of a semiformal development, where formal specifi-
cations are used only when required or convenient for the problem at hand. Our second example,
a combination of predicates and specification statements, presents a precise formal heterogeneous
specification and its development into code. This might be termed an example of a formal het-
erogeneous development. The final example describes how Jackson process diagrams and formal
specifications might be combined, in the framework of an applied example from chemical systems
modelling.

The reader should be aware that these “case studies” are only small examples (as they must
be for presentation in this forum). They are not the only (nor necessarily the best!) approach in
which heterogeneous specifications might be used to solve the problems. The manner in which such
specifications should be used for a particular problem will depend heavily upon the developers, the
nonfunctional constraints under which they must operate, and their interpretation of the problem.
These examples are presented in order to demonstrate how heterogeneous specifications might
be used in development, and to describe particular instances of some interesting—and nontrivial—
specifications.

16

www.manaraa.com

B.1 First-come first-served simulation

The problem we wish to solve is that of constructing a simulator for a first-come first-served sched-
uler. We wish to develop a solution for this problem using heterogeneous specifications, guided
by the Structured Analysis and Design development method [DeMa79]. Our heterogeneous speci-
fications will be based on predicates, combined with structure text, data flow diagrams, structure
charts, and programming language code. Compositions between these different notations are jus-
tified by the framework (and translations) developed and described in Appendix A. We could use
this basis to—completely formally—develop an implementation, but we do not follow this path here.

The initial requirements and problem explanation are as follows. We will see that, as is fre-
quently the case with such descriptions, the presentation of what is required from the solution is
rather poorly stated.

Write a program to generate data and to simulate a first-come first-served short-term scheduler.
The program will have two parts: the first will generate a set of data to be loaded by the scheduler.
The second part will simulate the operation of the FCFS scheduler on the data. The program should
be implemented in such a way so that the function of the generator is as independent as possible
from the simulator (so that the generator part can be moved into a separate program if necessary).
Recall that a short-term scheduler consists of a queue, holding waiting processes, and programs
that accept arriving processes and send processes to the CPU for execution at the appropriate time.

The generator part of our program constructs data to be loaded by the scheduler. It generates
two vectors of data, one holding random CPU burst lengths, and the other holding random
arrival times of processes. The CPU bursts should be generated so that 80% of the bursts are
uniformly distributed between 0.1 and 1.0, and the remaining 20% are uniformly distributed between
1.0 and 10.0. The arrival times of the processes must have a Poisson distribution. The time interval
between two contiguous arrivals is given by:

—Alog, =

where z is a random variable uniformly distributed between 0 and 1. The parameter A is chosen
so that the ready queue is steady, i.e., so that the rate of arrivals to the queue and the rate of
dispatching processes from the queue are approximately the same. A value of A = 1.3 should suffice
for this FCFS simulation (although if a different scheduling algorithm, say, round-robin, were used,
the constant would clearly be different). The vectors of data should be stored in a file, data, in
order to meet our independence requirement.

The second part of the program is the FCFS simulator. The vectors from data are loaded, and
the CPU bursts are partitioned into ten groups. Group 0 contains bursts ranging in length from 0.1
to 1.0. Group 1 contains bursts from 1.0 to 2.0,..., and Group 9 contains bursts from 9.0 to 10.
Average wait times must be calculated for each group. The number of processes in each group, the
total wait time, and the average wait time should be output from the simulator for the generated
data. Waiting processes will be stored in the ready queue.

For the most efficiency, the ready queue for the scheduler should be implemented by a circular
queue of length MQL (a reasonable value for MQL is 100). When the simulation begins (i.e., at
time = 0), the first CPU burst starts in the CPU. The next 20 bursts must already be in the ready
queue when this starts (this is the initialization of the ready queue before commencement). The
scheduler adds processes to the ready queue if they arrive before the currently-active process in the
CPU finishes. Upon completion, the current process is dequeued, and the process at the head of the
queue then begins execution. This process continues until either the queue destabilizes, or all the
CPU bursts have been served.

The statistics (average wait time, etc.), are best calculated when the scheduler dispatches a
process from the ready queue to the CPU. Of course, you will have to keep track of the arrival times

of all processes in the ready queue (since the wait time of a process is T' — arrivaltime).

17

www.manaraa.com

The problem is described in a manner which is quite hard to understand. For this reason,
we initially choose to use a structured approach to development. The general scheme followed
in such an approach is to first present a data view of a solution to the problem. This is refined
into a modular presentation (in the design phase). Then, structure text is generated, and finally,
an implementation (which we shall describe in the programming language C) is constructed. See
[DeMa79] for more detail.

The first stage in our development is to generate a data flow diagram (DFD). In this example,
our diagram will be heterogeneous, since we feel most comfortable constructing a solution using
multiple notations. Our first (context-level) DFD appears as shown in Figure 2.

NUMBER

FCFS
Simulator

stats
SCREEN

Program

Figure 2: Level 0 context diagram

Notice that this diagram is identical to one that could be produced under a standard structured
analysis approach. Note as well that if we specified the DFD bubble formally (which is certainly
possible, though likely not desirable at this stage), we would be able to have a completely rigorous
development of a solution guided by the Structured Analysis and Design process. However, the
semiformal development process offered by the structured approach may very well be more conve-
nient to use in many development situations (e.g., when building large programs) than a completely
formal one. We follow the semiformal and heterogeneous development path in this example, and
leave the formal approach for another time.

We now elucidate the DFD by splitting up the context diagram into its two constituent parts:
the data generator, and the simulator. We specify the generator part using a (visual) predicate
specification, since this is how we best understand the problem. In the DFD refinement, we add a
file (an external resource) named data. The reason for performing this introduction is so that later,
once we have reached code level, it will be possible to separate (both syntactically and in terms of
execution) the generator and simulator code portions. This elucidation is shown in Figure 3.

In Figure 3, random is a function generating a random real uniformly distributed between 0
and 1 (it can be implemented, for example, by the C function drand48()). As well, MQL is the
maximum length of the simulator’s circular queue, and we use ; to denote relational composition
of predicates.

Notice that in the visual predicate specification of generator, we have made use of several data
objects. These should be added to our data dictionary (along with their formal types, where known)
and can be used in specifying other parts of the solution (constrained, of course, by scope). Note
as well that we are not restricted to using these precise data objects throughout the solution; we
can data refine them away as necessary, providing that we make the appropriate changes to the
data dictionary®. We could also use them-in certain cases, e.g., when data refinement is simply
supertyping—in such a way so as to take advantage of foreknowledge regarding data transformation:

8This process might be called data dictionary refinement.

18

www.manaraa.com

generator

(to=0~ | [i:1,.NUMBER.)
(c0=09* -~ N

adon | ct

01lv |

c'0=9* | p : : N

rlagc;om * : n<=0.80=> | n>0.80=> Fi-t(i-1)=

’ I c'i=0.9* I c'i=9*random ! -A*
|| random+0.1 : +1.0 : In(random)
: I I data
| |
: | |
| | |
! | | ct
AN I I y, '
: \ J
\§ J
/I NITIAL
MQL —
™ GROUPS
NUMBER A stats
SCREEN

Figure 3: Level 1 Diagram

19

www.manharaa.com

for example, if we know that a data object is to be reified to an object of a particular type (and
this reification is suitably documented), we can use the object as if it had the reified type. We
make the following data definitions now, and use them throughout the specification as needed.

MQL,INITIAL,NUMBER : nat
GROUPS = 10

A real
ce,t : [NUMBER xreal]
cell = “burstlength” — real | “arrivaltime” — real
ready : [MQL * cell]
boundary, head,tail,length : nat

bursts,arrivals : [NUMBER x real]

The next step is to elucidate the SIMULATE FCFS bubble. We do this using a heterogeneous
data flow diagram, as shown in Figure 4 (note that Figure 4 shows only the refinement of the
relevant bubble, and not the entire flow diagram).

We have not specified predicates) and R in Figure 4, to keep the complexity down®. The
precise definition of () is as follows:

Q = bursts' (i) = ci Aarrivals'(i) = ti.

The reason why we have introduced arrays bursts and arrivals in the specification of @) is so
that when implementing the simulator code portion we can eliminate array variables ¢ and ¢, which
we see are not needed due to the presence of the file.

To specify the predicate R, we note that it is a description of the FCFS simulator. Since it is
often best to use operational specifications to describe simulations, we make use of some program
code in this case. Recall that the queue to hold processes will be implemented in a circular fashion,
and that when the simulation begins there are already INITIAL processes in the ready queue.

time:=0; arriving:=INITIAL;

while (stable) do (

updatecount;
marr:=MAX j:arriving,..NUMBERe (time+boundary>arrivals(j));

for i:=arriving;..marr do (length#MQL) = enqueue(bursts(i),arrivals(i)-boundary);
arriving’=marr A current’=front;

dequeue)

In the specification, stable = length>0 A length#MQL, the constant boundary is the arrival
time of process INITIAL — 1, and the predicate updatecount updates the statistics for the simu-
lation (we do not worry about its specification here, but it is trivial). The functions front, enqueue
and dequeue can also be formally specified; we do so because we understand them well in such a
format. enqueue is defined as follows:

enqueue = Aa,b: real ® (head # (tail + 1 mod MQL)) = ready’ = (tail; “burstlength”) — a |
(tail; “arrivaltime”) — b | ready A tail’ = (tail + 1) mod MQL A length’ = length + 1.

“We certainly could write them visually, if we so desired.

20

www.manaraa.com

SCREEN

data

ct

Load

Ui:0,..NUMBER.

Q

GROUPS,
count, wait

Create & MQL

Initialize

Queue

INITIAL

/

bursts,
arrivals

INITIAL
in Queue

ready, bursts,

arrivals

Simulate

(
L

!

GROUPS

Figure 4: Refinement of SIMULATE FCFS

21

www.manharaa.com

The function dequeue is much simpler:
dequeue = (head # tail) = head = (head 4+ 1) mod MQL A length' = length — 1,
while front is the simplest of all:
front = ready(head).

We now feel that we have sufficiently specified the problem so as to be able to generate an
implementation. (The structured approach suggests that we refine DFD bubbles until they are at a
level from which pseudocode can be easily generated. The heterogeneous variant of the structured
approach would extend this DFD refinement process to include the generation of any appropriate
text-based specifications—both formal and semiformal). However, the next stage in standard struc-
tured analysis and design would be to describe a structure chart. Our heterogeneous structure
chart would appear something like the one shown in Figure 5.

FCFS Simulator
count
= 7 data\b /ﬁ bursts bqrszs¢ ¢ \\ count wat
ready arrivals arvals ready ready wait

[) B) [(25

> oD >

Figure 5: Heterogeneous structure chart

In Figure 5, P is the formal specification of the generator, and) and R are as above. How-
ever, one might reasonably say that a solution to our problem is suitably determinable from the
DFD!°. Thus, the usefulness of the heterogeneous structure chart can be called into question in
this situation. It is certainly possible to construct structure text (i.e., pseudocode) from the data
flow diagram with little difficulty. In fact, if at this stage we decide to continue the development
in a completely formal manner, we could formalize the DFD-or the structure chart—and proceed
rigorously, after integrating P,), and R into the mix.

ASIDE: Different Paths

At this point in the development process—after the construction of a suitably low-level data flow
diagram—there are several paths we might choose to follow:

1. Continue with the SA/SD-guided heterogeneous development method, where predicate parts
will be included in composition with the standard structured notations.

%7t never hurts to describe the system’s modular structure using the structure chart.

22

www.manaraa.com

2. Unformalize the predicate parts (say, to process specifications expressed as programs or pseu-
docode), and proceed with a standard SA/SD development.

3. Formalize the DFD (i.e., translate the structure of Figure 4 into a formal notation) and
proceed with a completely rigorous development.

These approaches run the gamut of development methods, ranging from completely semiformal
(Method 2.), to completely formal (Method 3.), with an arbitrary mixture of formal and semiformal
development in between (Method 1.). While we will follow 1. in developing a solution here (since we
believe that it best captures our understanding of the problem decomposition), we briefly consider
aspects of 2. and 3. here, for the sake of exploring some of the alternatives that other developers
may find preferable.

Unformalization

This development process step might arise when unforeseen or unfortunate nonfunctional con-
straints come in to play. One might envision a scenario in which, after having introduced formality
(in some quantity and some manner) into a development, our nonfunctional constraints are altered
in such a way so that we are unable to fully take advantage of the formal nature of aspects of our
specification. For example, perhaps the deadline for our project has changed, so that we do not
have the time to produce formal developments for the appropriate part of our system. Or, perhaps
we have lost the services of some of our formal methods experts, and the personnel remaining
on the project do not have the expertise necessary in order to read, write, and utilize the formal
specifications at hand. What we need to do here is to unformalize relevant parts of the hetero-
geneous specification (or, from another perspective, backtrack through the steps of heterogeneous
specification construction), and continue with development using whatever semiformal approaches
there are at hand.

The unformalized!! data flow diagram for Figure 4 might look something like what is shown in
Figure 6 (note that there are many other unformalizations that may present more or less process
detail than is shown in Figure 6):

This is an obvious (structural) unformalization of Figure 4, and is one that will let us continue,
straightforwardly, with standard structured analysis and design (note that we may have to elucidate
the unformalized process bubbles). However, in unformalizing the heterogeneous DFD, we have
lost a lot of the information'? that was present in Figure 4. It may be possible to save some of this
information; there are two obvious ways in which we might do this:

e unformalize not only the structure of the heterogeneous specification but also the text as-
pects of the heterogeneous parts, and add this text to the (homogeneous) DFD as process
specification parts (PSPECS).

For example, from Figure 4, we might gather the following information for the generator

part:

process generator
inputs: NUMBER, A

outputs: ¢, t

"This is something of an unfortunate term: relatively speaking, Figure 6 is more informal than Figure 4, but
circumstance dictates whether or not the heterogeneous DFD should be considered formal in the first place.
12This is unavoidable: unformalization is the inverse of a process which is by its very nature information-adding.

23

www.manaraa.com

Create & MQL

Init.
l ready
A
NUMBER bursts, o
Load arivals ace
————=1(INITIAL INITIAL
data in queue
ready, bursts,
arrivals
SCREEN
GROUPS

GROUPS,

stats count, wait

Figure 6: An unformalization of a heterogeneous specification

logic: Compute the values of arrays ¢ and ¢ at 0. Fill in the rest of the arrays with random numbers, with
80% of the burst times between 0.1 and 1, uniformly, and 20% uniformly between 1 and 10, and with the
arrivals having a Poisson distribution.

Again, information is lost in the unformalization process, but the amount in question is much
smaller providing we add the above details as a process specification.

Unformalize the structure of the heterogeneous parts recursively, i.e., attempt to capture
(some of)) the structure of the formal specification parts as DFD process bubbles. Then, we
can try and apply the above process (i.e., unformalization of text parts) to gather even more
information semiformally.

The result of such a process might be depicted as shown in Figure 7; the dotted lines encircle
the recursively unformalized parts. Notice that in this diagram we do not depict any of the
more algorithmic details, which can be captured in process specifications as described above.

24

www.manaraa.com

data Create & MQL
Init.

Compute ct

“y NUMBER
bursts, N
Load arrivals ace
arivals [TIAL INITIAL
data in queue
ready burs't.s'"
SCREEN arrivals
Initialize

Stats Simulator

ready, bursts, arrivals

Output
statistics

Exec.
current
process

current

GROUPS, -\
count, wait -

GROUPS

Check for ready,bursts,
simulation

completiol

arrivals

Figure 7: Recursively unformalized data flow diagram

25

www.manharaa.com

Formalization

A second path we might choose to follow at this point in the development is a rigorous, formal
one, in which precise specifications are constructed and are used—either in a subsidiary support
or a central construction réle-to develop a final implementation. We might view this choice of
development process as being the ideal: in the best of all possible situations, we should like to be
able to perform all development steps rigorously, via some initial formal specification. Of course,
this will not be possible in most development situations, due to both functional and nonfunctional
constraints. This is the main reason why we believe that development path 1. is the most realistic
(for this situation) among the given alternatives. Even so, there may be situations where a com-
pletely rigorous development is desirous or necessary, so it behooves us to show how we may switch
to one—in midstream, so to speak—during a previously semiformal heterogeneous development.

The way that a transition to a formal development from a heterogeneous development can occur
is by formalizing the (heterogeneous) semiformal specification at hand. In our example, the most
detailed semiformal specification we are given is a heterogeneous data flow diagram with predicate
parts (see Figure 4). To formalize this, we express the diagram in Z, with one schema per DFD
process (this includes the predicate parts). A formalization (or, re-expression in Z), might look
like the following (we have, implicitly, added extra data stores representing state to the DFD of
Figure 4 in order to simplify the formalization process.)

data == [e,t:seqR]
Generator == [Adata;\?7:R;NUMBER?:N| P]
Load := [Zdata; ACells| Q"]
Cells == [bursts,arrivals: seqnuypgr cell]
Create_and_Init == [MQL?:N;AReady]
Place INITIAL == [AReady;=Cells;INITIAL? : N]
Ready == [ready: seqnqr cell]
Simulate = [GROUPS?: N; AReady; AStats;=Cells | R]
Stats = [count,wait : seqaroups cell |
Output == [ZStats;stats! : T]

(The process for translating a DFD into Z schemas is given elsewhere, but it is straightforward,
and in certain cases automatable. We have omitted type and data declaration details, but these
are straightforward as well, and resolve to creating a data dictionary. Unfortunately, this latter
process is not automatable.)

In the Z formalization, P, @', and R are all formal specifications, but are expressed as pred-
icates. P is the predicate for the generator specification of Figure 4. Q' represents the predicate
Vi:0,.NUMBEReQ (with Q) as before), and R is as specified in Figure 4. The resulting set of
schemas and predicates is a formal heterogeneous specification, except with predicative program-
ming specifications as the invariants of 7 schemas. We haven’t yet described how to deal with
these kinds of specifications. To work with them, we have two options:

1. Translate the schemas Generator, Load, and Simulate into predicates (this amounts to
adding appropriate variable declarations and possibly frame conjuncts to a predicate), and
leave P,)" and R untouched. The resulting formal specification will be a heterogeneous
combination of predicate specifications and Z schemas. Formal development of an implemen-

26

www.manaraa.com

tation can then proceed using theorems and rules like those developed in Appendix A, along
with other standard formal techniques.

2. Translate P, Q', and R to Z notation and leave them as the bodies of the schemas in question.
In this particular example, this amounts to a syntactic rewrite of P, @' and R (since all
three specifications are feasible). The resulting formal specification will be homogeneous, and
implementation may proceed using any approach to development with Z.

The decision as to which development path to follow—formal, semiformal, or heterogeneous—
may occur at any time during an initially heterogeneous development. For example, we could
have performed the unformalization of the heterogeneous specification after the construction of
a heterogeneous structure chart, or after the development of heterogeneous structure text. We
might have performed formalization, too, in similar places. The choice of when to perform such
formalizations or unformalizations will depend on the nonfunctional and functional constraints on
the development at the time the decision is made. The heterogeneous approach to development
allows designers to take into account changes in constraints throughout the construction process,
which will hopefully provide them with the flexibility that they need for difficult developments.

END OF ASIDE.

In attempting to construct an implementation of our solution, we choose to follow the path
of developing heterogeneous C code, which will mean we carry out all the final refinements of

formal parts at the text level. The resulting heterogeneous specification is as follows, with P and
R as above, with Q' =Vi:0,.NUMBERe (), and with the definitions of the functions enqueue,
dequeue, and front as described earlier.

#include <stdio.h>
#include <stdlib.h>
#define NUMBER 2000
#define MQL 100
#define GROUPS 10
#define INITIAL 20

main(){
double bursts[NUMBER], arrivals[NUMBER];
double boundary, time, wait [GROUPS];
int i;
long count [GROUPS];
struct cell current;
FILE *fp;
char *fname="data";

/* Generator */
fp=fopen(fname,"uw");
P;

fclose(fp);

/* Create & Initialize Queue */

27

www.manaraa.com

head=tail=length=0;

for(i=0; i<GROUPS; i++){
count[1i]=0;
wait[1]=0.0;

¥

/* Load data */
fp=fopen(fname,"r");
for(i=0; i<NUMBER; i++)
fscanf (fp,"%1f %1f\n",&cl[il,&t[i]);
Q’;

/* Copy into C data structures (this will
be eliminated later) */

for(i=0; i<NUMBER;i++){
bursts[il=c[i];

arrivals[il=t[i];

}

current.burstlength=bursts[0];
current.arrivaltime=arrivals[0];

/* Place INITIAL in the queue */

for(i=0; i<INITIAL; i++)
enqueue (bursts[i],0.00);

i=INITIAL;

time=0.0;
boundary=arrivals[lengthl;
/* FCFS Simulation */

R;

printf ("\nGroup ");
for(i=0;i<GROUPS; i++) printf ("%7d",1i);

printf ("\nCount ");
for(i=0;i<GROUPS; i++) printf ("%7d",count[i]);

printf ("\nWait ");
for(i=0;i<GROUPS; i++) printf (" %6.1f",wait[i]);

printf ("\nAverage");
for(i=0;i<GROUPS; i++) printf ("%7.1f", (wait[i]l/count[i]));

printf ("\n\n");

28

www.manaraa.com

We consider this specification to be formal: we treat the C code portions as predicates (even
if we are not willing to provide all of the C parts with predicate definitions. For example, the
statement boundary=arrivals[length] has predicate definition boundary:=arrivals(length).
The declaration double bursts[NUMBER] has predicate semantics bursts: [NUMBER*real].

ASIDE. There are several details we have not gone into in the above heterogeneous spec-
ification. Foremost amongst these ideas is that of data refinement. We will have to provide
implementations (in C) for the data objects contained in the (formal) data dictionary described
elsewhere, and for the extra declarations introduced in the heterogeneous specification. We
must be able to prove that these implementations are reasonable for the specification as given.
In this particular example, the data refinements to be proven are relatively trivial (we do not
get into i1ssues of precision here, since we treat C as a mathematical notation. The notions of
overflow, etcetera, while important, are implementation concerns, and are beyond our interest
here.), and resolve to syntactic translation. In other situations, the proof obligations will be
more complicated, and will require more effort to discharge. END OF ASIDE.

The next stage is to refine the specifications P, @)', and R to code. This is a straightforward
process. We describe the refinement to P here:

t0:=0;
n:=random;
c0:=if (n<=0.8) then .9*random+.1 else 9*random+1;
i:=1;
while (i<NUMBER) do (
n:=random;
ci:=if (n<=0.8) then .9*random+.1 else 9*random+1;
ti:=-lambda * 1ln(random) + t(i-1);
i:=i+1

);

The final refinement to the simulator specification R might look something like the following:

time:=0; i:=INITIAL;
while (stable) do(
updatecount;
while((time+boundary>arrivals(i))A(i<NUMBER)A (length#MQL))do(
enqueue (bursts(i),arrivals(i)-boundary);
i:=i+1);
current:=front;
dequeue)

The refinement for @)’ is easy, and we omit it.

We can now translate these implementations into C code. When we finally do this, we choose
to eliminate the arrays ¢ and t, and write the computed burst and arrival times directly to the
file data as they are computed, for the sake of saving storage. We omit the code here, as it is a
straightforward translation from the developed specifications above.

The heterogeneous specifications we have used in this example allowed us to introduce the pred-
icate specifications!® at the most convenient time for us as designers. It appears likely that any
semantic gaps introduced by using such specifications (e.g., in the construction of the DFDs) are

'3 And, more generally, anyuseful notation.

29

www.manaraa.com

small, since the formal notations are used and manipulated without making reference to any semi-
formal specifications at a different level of development!'*. We also believe that the development
presented herein may be simpler (from this developer’s point of view) and possibly shorter than
one that would arise through the use of standard structured analysis and design. One reason for
this latter suggestion is that a lot of structure text (i.e., pseudocode) does not have to be generated
because of the early introduction of the formal notations. Furthermore, the early introduction of
such notations may simplify the generation of “code” (be it pseudo- or concrete), simply because a
great deal of the code specifications are already present in the data diagram. Certainly, the devel-
opment presented above is more rigorous than the standard SA /D process; in fact, the development
can be extended to make it as rigorous as desired (as we discussed earlier).

We should emphasize once more that this development is not the only one possible. It should
also be clear that the development is not necessarily the best: it just happens to be an approach
that made sense to the author, and used the notations that best suited the problem and author
at the time of development. Other developers will have other opinions (and other methods of
development). That is to be expected; no development process or notation can be all things to all
people. The heterogeneous approach has the ability to take all development methods and choices
of notation into account and generalize them in such a way so as to make the most flexible method
and notation for any particular problem.

B.2 A formal derivation

We now consider an example of a formal heterogeneous development: the process of rigorously devel-
oping code from a formal heterogeneous specification, using—for example-the techniques, theorems,
and concepts developed in Appendix A. The particular example we consider is one of computing the
natural square root of a natural number s (see [Morg94] for a detailed examination of this problem
and its solution developed with the refinement calculus). For our notations, we use specification
statements and predicates. Our development will use the refinement relations C and < as neces-
sary, and we will use the theorems of Appendix A to justify refinement steps where needed. We
do not present a detailed description of our algorithmic approach to solving the problem; it will be
similar to that of [Morg94], so we refer the reader there for further details.
Our initial specification is the specification statement

r:[r’2§8<(r’—|—1)2]7

and as in Appendix A we use the primed-unprimed variable conventions of predicative programming
for the sake of simplicity. Our first refinement will be identical to the initial step in [Morg94]:

C varg:nate

g o[<s<d?*Ar'+1=4"].

Next, setting I (an invariant) to r? < s < ¢* (and, accordingly, I' = r'? < s < ¢'*), we introduce an
initialization through a sequential composition, using the law Leading Assignment of the refinement
calculus.

C frameq,rer” <s< g% (i)
gr:[LAY +1=¢q"] (ii)

Y1n fact, the predicate parts can be viewed—if it is useful-as processes of the DFD.

30

www.manaraa.com

Note that (¢) is a predicate; its introduction is due to a refinement by parts law akin to Theorem
4 in Appendix A. Switching to the predicative programming notation, we can refine (i) (inside the
frame) as follows:

(i) « ¢d=s+1A1r"=0
<= g:=s5+1;r:=0

Next, we refine (i¢), and, using the law for introducing a loop (on invariant I’, guard ¢ = r+1 and
variant ¢ — r’) obtain:

(1)) C dog#r+1—
gri[r+1#£gNL TN —7r" <qg—r] (itd)
od

Once again, the refinement of (i¢) is performed in the refinement calculus. To refine (ii7), we
introduce an intermediate natural variable, p, and refine to a sequential composition on mid = r <
P’ < ¢ (again, justified by our ability to perform partwise refinement heterogeneously):

C varp:nate
framepe (r+1<qg=r<p <q); (i)
gri[r<p<gANL,I'ANg—-7r"<qg-—r] (v)

The first half of the sequential composition is easy to refine:
(tv) < pi=(¢g+r)=+2

(where + is integer division). To refine (v), we introduce a selection using the appropriate refinement
calculus law, with guard s < p2.

(v) C ifs<p®—frameqe(s<p’Ap<q=>I'"Ad <q) (vi)
[s>p* = framere(s>p’ Ar<p=I'Ar<r) (vii)
fi

The final two refinements are easy (in fact, in our opinion it is easier to see and prove the refinements
in this stage of the development than when using the refinement calculus):

(vi) = q:=p
(vit) <= ri=p

and thus code has been generated.

It is not our claim that the previous example is shorter than that obtained through using the
refinement calculus by itself. Indeed, the number of refinement steps in both derivations is almost
15 1t is our claim that in several cases the actual refinements in each step are easier
to see (in particular, the refinements (iv), (vi) and (vii), amongst others). This is because we
have introduced specifications in the predicative notation, and in this notation the specifications

the same

in question have a clear and obvious refinement.

13 Also, it is not clear if it is even a reasonable metric for comparison.

31

www.manaraa.com

This is not the only way the refinement of this specification could have been presented; indeed,
there are a large number of different approaches that could have been taken. In particular, it might
be beneficial to consider introducing the do-loop using the predicative notation, which has a very
simple way of handling loops (specifically, the invariant and variant are hidden in the recursive
refinement, and do not have to be explicitly dealt with in the refinement law). This would of course
lead to a different—and possibly shorter—development.

B.3 An Applied Example

We now consider an example of applying heterogeneous specification and development in a more
applied setting. Specifically, we are interested in constructing a program for use in modelling an
ionic equilibrium. The equilibrium in question involves Fe3t (iron(Ill) ion), arsenate (AsO3™),
nitrate (NO3), and sodium (Na®) ion. We desire to use a particular method—modelling the system
as a polynomial-to find the concentration of hydrogen ion in the equilibrium. Once this concentra-
tion has been determined, we can then calculate the concentrations and activity coefficients of the
species and the ionic strength of the solution. The exact system in question (along with the names
of the hydrolysis constants we use for each reaction) are as follows. For the iron species:

HY 4+ FeOH™*
HY + Fe(OH)}
HT + Fe(OH)3
HY + Fe(OH);

k1 : Fe*t + H,O
k2 : FeOH*t + H,0
k3 : Fe(OH)T + H,0
k4 : Fe(OH)s + Hy0

L4 bl

and for the arsenate species:

klp : H3AsO, — H' + HyAs0;
k2p : HyAsO; — HT + HASOZ_
k3p : HAsO.™ — H' + AsOj~

To calculate the ionic strength, U, of the solution, we use the following formula:
U=1% mis?
2 Z T~ 0

where m; is the molality of ion ¢ and z; is the charge on the ion. To calculate the activity coeflicient
of each species, we use the Davies equation (for each ion ¢):

—AtXZZ'X\/ﬁ
14+0.7797 x VU

(The At factor will in general depend on the relative permittivity and the temperature.)
The general modelling process will be approximately as follows. The reader should take note
of its iterative nature.

e Initialize the hydrolysis and system constants for the given equilibrium from a data file. The
file will be formatted for use with other programs, so its structure is fixed at development
time; thus, it may contain data which is irrelevant for our purposes.

32

www.manaraa.com

e Lor each system observation (which consists of a temperature, a pH, a concentration of total
iron and a concentration of total arsenic), calculate the coefficients of the polynomial model
(set up so that the roots of the polynomial give the concentration of H*). Compute the roots
of the polynomial (to within a given precision). From this, determine the concentrations and
activity coefficients of the species, and the ionic strength of the equilibrium.

Since in our model we will be dealing with polynomials with real coefficients, we realize that the
roots of the polynomial may be complex. By placing an interpretation on a root as a concentration
of HT, a complex value for a root is meaningless. Thus, we will have to ensure-somehow—that
the root-finding process produces at least one real, positive root. In general this is impossible, but
shortly we will describe how and why we can avoid the problem.

We commence our specification by describing a few of the data objects to be used in design.

N : nat
a : [(N+1)*real
root : [(N + 1) x complez]
nposroots,nob : nat
pl, ql, cconc,eps, pH, kw : real
k1,k2,k3, k4, klp,k2p,k3p : real

clFe,cAs : real

In this data dictionary, N is the degree of the polynomial (in general, we may want to allow the
user to change N when executing the program so that experimentation with the model can occur).
a is a list of (real) polynomial coefficients (the polynomial has the form ™ + a2V~ + .. + ay).
root will contain the N (complex) roots of the polynomial (root(j) has the form z 4 iy, where
i? = —1 and z and y are real). We declare the arrays to be of length N + 1, since we envision
eventual implementation of the system in FORTRAN, where arrays are indexed from 1.

We choose to use Bairstow’s method in finding the complex roots of the polynomial model.
Previous experience has shown that Bairstow’s method is reasonably well-behaved for the polyno-
mials we will encounter in this application (there are many other good approaches, though they are
typically more complicated to implement). There are several reasonable ways in which we might
choose to specify Bairstow’s method in this situation:

1. A direct implementation, using code from an appropriate numerical library (e.g., IMSL).
Such an implementation will typically be in FORTRAN. The benefit of this approach is
that a likely well-tested implementation can be reused. This will not be an option in all
development situations, since we cannot always be assured of having a good reuse library.

2. A formal specification. This might then be refined into an implementation. There are several
formal specifications we can give. One might be (in Hehner’s notation):

eV faaN T 4 L day_zFay = H] 1, N+ 1e(z—1'(5)) (2)
where r is an N-element list of complex numbers. This can be data refined quite easily to a

specification which uses a list that is twice as long and implements the complexes as pairs of
consecutive reals, which is one way in which complexes can be denoted in FORTRAN.

33

www.manaraa.com

The specification (2) is suitably definitional to allow implementation using any complex root-
finding algorithm. Since we know that we want to use Bairstow’s method, it seems reasonable
to alter our formal specification to take this information into account.

Bairstow’s method can be described (semiformally) as follows:

Algorithm: Bairstow’s method.

Given: initial factors po, qo, real coefficients aq,..,an (where a; is the coefficient of z
the coefficient of 2V is 1.)

Method:

N=i and

1. Calculate sequences b and ¢ from the equations:

by =0ANbg=1AVj:1,.N+1eb; =a; —b;_1 X po—bj_2 X qy,
c.1=0ANcog=1AVj:1,.N+1lec;=0; —po X cj_1 —qo X cj_2.

2. Calculate the § factors from the equations:

cN—20p +cN_30, = —bn_1
(=bn-14+ en-1)dp, +en—2d, = —bn

Then, p = po + 6, and ¢ = gy + d, (providing the system has a solution).
3. Repeat steps 1. and 2. until §, and 4, are suitably small.

4. The values of p and ¢ give us a quadratic factor, r(z) = 2? + pz + q. Compute the zeros
of r(z), giving us two roots of the initial polynomial. Copy the values of b; into a; for all ¢
in order to perform synthetic division of the initial polynomial by r(z) (i.e., (2% + pz + ¢) x
(N2 £ b2V 3 4+ by o) = 2V 4+ ... + an). Reapply the process, starting at step 1., to
the divided polynomial, substituting the values of p and ¢ for pg and ¢o respectively. Stop
the repetition when the divided polynomial has been reduced to a constant factor.

A formal specification of Bairstow’s method might look like the following. Note that it is much
more detailed than our initial formal specification; further, notice that the lists a, b, ¢, and root are
all declared elsewhere. We also assume that the coefficients have been normalized by a(1) (i.e., the
coefficient of 2V is 1.0).

BAIRSTOW =AN : nat; p0, q0, eps : real;itag : nat o (
var m, it : nat;d, e, f,p,q,sum,os : real o (
it = itag A ttag’ = 0;
while (N >0) do (
if (N =1) then root'(itag) = —a(1) AN'=N -1
else if (N =2) then z?+ pr+q= (z —root'(itag+ 1)) (x — root’(itag)) N\ N' = N — 2
else (
p=p0Aq¢g =q0Am =1;
while(m < it) do (
Vl=al —pAb2=a2—pxbl—qgANd1=b1-pA2=02—-pxdl—-qgA
Vi3, .Nt+lebj=aj—pxb(j—1)—gxb(j—2)Ac'j=bj—px(j—1)—qgx(j-2);
¢(N=2)2#c¢(N=3)x (¢(N=1)=b(N—1)) = ¢(N =2) X8 +¢(N—-3) X =

34

www.manaraa.com

—0(N = 1) Ae(N = 1) x &, + ¢(N = 2) x &, = =bN;
Pr=p+0, N =q+0; Asum' =6, |+ |5 [;
if (m=1) then o0s:= sum else ok;
m#5 Vsum < os = (
sum < eps = (
22+ pr + ¢ = (v — root' (itag + 1)) (z — root’(itag));
N>0= (Vi:1,.N+1ledi=bijitag’ =itag+1AN' =N -2 Am' =it +1));
m < it=m:=m+1);
m=>5Asum >o0s= N =0Am'=1it+1)))))

When we come to implement this specification, we may have to reify away the use of complex
numbers into either a record structure or pairs of consecutive reals in an array. We will choose the
latter approach here, but will not present the (formal) data refinement here.

In order to demonstrate that this specification determines the roots of the polynomial, we need
to show that it refines (2), given earlier. This entails: (a) showing that BAIRSTOW terminates; and
(b) that it satisfies (2). (a) is straightforward. We sketch a proof (by strong induction on N) of (b)
here, by showing that BAIRSTOW establishes, for a natural itag and assuming a mapping a; = a(7),

=V & alxN_l + ... tay= Hz sitag, ..itag+ N e (z — root’(i)).

Base case: N = 1. The polynomial is # 4+ a1, and BAIRSTOW sets root’(itag) = —a(1). The
result follows.

Inductive hypothesis: Assume, for all N < k and coefficients a4, .., az,

2 taef N+ 4 an = Hz sitag, ..itag+ k e (z — root' (1))

Inductive step (prove for N = k + 1): From BAIRSTOW, we know that 2% + pz +¢ =
(x — root'(itag))(x — root’(itag 4+ 1)). Furthermore, from the inductive hypothesis,

d " ba T by = (itag + 2), - (itag + k4 1) o (¢ = root’(i)).
But, from the definition of the b;’s, we see that
(x2 + pz + q)(wk_l + 02" 2 b =2t e+ Aft1-
Therefore,

(z — root'(itag))(z — root’ (itag + 1)) Hz : (itag + 2), ..(ittag+ k + 1) @ (x — root’ (1))
=M b agaf 4 g,
which implies that
Hi sitag, ..itag+ (k4 1) e (z — root' (1)) = 2" + a12® + .. 4 apyy,
giving us our result.

We have not taken precision into account here; that is an implementation issue, and must be
dealt with at that time.

35

www.manaraa.com

We now consider the problem as a whole. On first examination, a solution to the problem
at hand will likely best present itself in an iterative manner (since, among other parts, the root-
finding mechanism is iterative). This is typical of many numerical methods-since the method itself
is invariably iterative, an iterative specification is invariably the best. Therefore, we choose to
specify a solution using heterogeneous Jackson process diagrams (PSDs), because we feel that the
PSDs are a good graphical formalism for expressing sequential programs'®. The heterogeneality
will arise through compositions of process boxes with higraph predicates, and through compositions
of structure text (developed from the PSDs) with formal specifications.

Our initial PSD specification is quite trivial, and is shown in Figure 8.

calc_concs

Figure 8: Initial Jackson specification

We refine this specification by adding initialization, data access, and a loop to iterate over the
number of observations. This is shown in Figure 9.

calc_concs

|
| | |

init_process open files ionic_consts OBSERVATIONS

cl=i<=nob
Figure 9: Adding initialization and observation loop

The loop OBSERVATIONS is the main part of the specification, and since it is fairly large,
we refine its details in a separate diagram. This elucidation is described in Figure 10. Here, we
have added heterogeneous details: a formal specification describing (the structure of)) our initializa-
tion of the polynomial model; initialization of the quadratic factors needed for Bairstow’s method;
description of Bairstow’s iterative method (the box BAIRSTOW in Figure 10 refers to the specifi-
cation BAIRSTOW given above); calculation of the number of positive real roots (specification P in
Figure 10); and a specification choosing the “likeliest” root out of a list of solutions (the “likeliest”
root is the one that gives an It concentration closest to 1077H . If there are no real positive roots,
then we use 107P# as the concentration of hydrogen ion, which typically gives good results in this
situation). Specification @) in Figure 10 corresponds to choosing the “likeliest” root.

From our perspective, this completes a PSD description of the system'”. There are now several
ways in which we could continue this development. We choose to take the following path:

1. As in standard JSP, annotate the PSD blocks with process details, conditions, etcetera.
Further elucidation of the PSD blocks might occur here, if we so desire.

18 Other developers will of course prefer different notations.
7Other developers might choose to add more detail, which is perfectly reasonable.

36

www.manaraa.com

I from OBSERVATIONS

OBS SEQ
I I I I
adj /a’(l) I Ia(lO)\ p1'—4I ql’ =iter P
input_obs — 2 2 - -
put_t precision | [=~ | 1=~ ! BAIRSTOW
S 1 1 J
| | T |
check nposroot =>Q | [F€1 CAS output_
= | =
posroot L concs
— I L
| |
nposroot 0 nposroot 0
>=1 =0
set_cconc_
to_pH

Figure 10: OBSERVATIONS loop

37

www.manharaa.com

2. Refine the formal parts (e.g., Bairstow’s method, etc.) either visually or textually, in order
to acquire a better understanding of system structure. These refinements may be added to
the heterogeneous PSD if it is useful or convenient to do so.

3. Generate structure text as per JSP usual, but the text for the higraph parts should be their
text equivalents. This latter generation is a form of syntactic translation, mapping from
higraph predicates to predicates. The mapping is described in [Paig95].

4. Further refinement and code generation may proceed, as per heterogeneous specification usual.
The JSP implementation process is applied to the JSP structure text parts. Implementation
of the formal parts proceeds as per predicative programming usual.

5. Syntactic translation of the (implemented) structure text and predicate combination into an
implementation language occurs.

A translation of the heterogeneous PSD into heterogeneous structure text is as follows. We omit cer-
tain details (e.g., the actual values for the polynomial coefficients, a full specification of Bairstow’s
method) in order to keep the specification manageable. The specification BAIRSTOW is as described
earlier (in our example, N =9).

calc_concs SEQ

init_process;

open_files;

ionic_consts;

OBSERVATIONS ITER WHILE i<nob

obs_seq SEQ
input_obs;
adj_precision;
d(l)=.A.Nd(N+1)=1.0;
pl’ = 0.40 A g1’ = iter x 0.005;
BAIRSTOW(N,pl,ql,eps,itag);
nposroots := ¢ (§7:1,..N + 1 e Re root(i) > 0 A Im root(i) = 0);
check_posroot SEL nposroot=0
set_cconc_to_pH;
check_posroot ALT nposroot>1
ok;
check_posroot END
nposroot > 0= (N =0 = cconc := 107PH) A (N > 0= (
ccone := root(i');
ensureVj: (§k:1,..N + 1 e Re root(k) > 0 AIm root(k) = 0)e
| root (i) — 107PH | < | root(j) — 107PH |));
cFe' = AN NcAs = ANU = . ANgAs' = .
output_concs;
obs_seq END
OBSERVATIONS END
calc_concs END

There are at least two ways in which development from this heterogeneous text specification may
now proceed: implementing the structure text (the semiformal parts); or refining the predicates
into code. Of course, both processes must occur in order to obtain an implementation. The

38

www.manaraa.com

implementation of structure text can proceed as per JSP normal. Refinement of predicates can occur
as is standard for predicative programming. After code is reached (i.e., after the heterogeneous
specification has been refined to an implementation), transliteration to a programming language
may occur. This latter process is mainly an issue of practicality: we are quite satisfied with a
heterogeneous program as our final implementation, but since we will want to execute it, translation
is a necessity. Of course, transliteration to an implementation language is not always trivial (issues
to be dealt with include variable declaration and implementation, precision, etcetera), but it is a
concern that is beyond our interest here. Our requirements specified that FORTRAN was to be
the implementation language; we omit the actual implementation.

There are other development paths which are possible once a heterogeneous PSD has been
created:

e Formalize the structure of the heterogeneous PSD and translate it into, for example, predi-
cates. This will give us a structurally-operational predicate specification. Development may
then proceed as per predicate normal, although a certain amount of detail (e.g., conditions
and extra formalization) will have to be added in order for translation to be complete.

e Unformalize the visual predicates in Figure 10 and place PSD process boxes in their place.
Development may then proceed as per JSP normal. Of course, any number of the visual
predicates (from zero to all) may be unformalized, in order to meet development constraints.
This process will result in a loss of information, but it may be reduced by using techniques
described elsewhere.

With a heterogeneous specification and development, we may adapt our development process
so that it best fits the situation at hand.

B.4 Conclusions

The main reason for us presenting such heterogeneous specifications is to demonstrate that notations
(both formal and semiformal) can be used together—both formally and semiformally!-to construct
programs. In many cases, the decision to use multiple notations will be based on convenience:
programmers may feel more comfortable using a specific notation for a specific task; a heterogeneous
notation may fit the problem or process better than a homogeneous one; and it may be easier to
take nonfunctional constraints into account through the use of heterogeneous specifications. Thus,
one of the main benefits of heterogeneous specifications is their flexibility and ability to adapt
to the situation at hand. Even so, whether heterogeneous developments are shorter, simpler, or
easier to understand is for the most part dependent upon the problem at hand. Indeed, there will
be many examples where homogeneous specifications and developments will prove more convenient
than going to the trouble and expense of heterogeneous specifications!®. Still, it is useful-and likely
even necessary—to know that notations can be used combinationally when necessary, for it seems
likely that development situations will arise where homogeneous notations will prove to be less than
adequate for the task at hand.

References

[AbLa93] M. Abadi and L. Lamport. Composing Specifications, ACM Trans. on Programming
Languages and Systems, 15(1), January 1993.

18
Of course, homogeneous specifications are just a special case of heterogeneous specifications!

39

www.manaraa.com

[AsCe93] E. Astesiano and M. Cerioli. Multiparadigm Specification Languages: a first attempt at
foundations. In Proc. Semantics of Specification Languages, Springer-Verlag, 1993.

[Back78] R.J.R. Back. On the correctness of refinement steps in program development, PhD thesis,
Dept. of Computer Science, University of Helsinki, 1978.

[Back90] R.J.R. Back. Refinement calculus II: parallel and reactive programs. In Stepwise Refine-
ment of Distributed Systems, LNCS 430, Springer-Verlag, 1990.

[BaVo89] R.J.R.Back and J. von Wright. A Lattice-Theoretical Basis for a Specification Language.
In Mathematics of Program Construction, LNCS 375, Springer-Verlag, 1989.

[DeMa79] T. DeMarco. Structured Analysis and System Specification, Yourdon Press, 1979.
[Dijk76] E.W. Dijkstra. A Discipline of Programming, Prentice-Hall, 1976.

[Dijk93] E.W. Dijkstra. The Unification of Three Calculi. In Program Design Calculi, Proceedings
of the NATO ASI on Program Design Calculi, Springer-Verlag, 1993.

[Grie81] D. Gries. The Science of Programming, Springer-Verlag, 1981.

[Gutt93] J.V. Guttag and J.J. Horning. Larch: Languages and Tools for Formal Specification,
Springer-Verlag, 1993.

[Hail86] B. Hailpern. Multiparadigm languages and environments (guest editor’s introduction to
a special issue), IEEE Software, 3(1), January 1986.

[HarD88] D. Harel. On Visual Formalisms, Comm. ACM, 31(5), May 1988.
[HarJ90] J.S. Hares. SSADM for the Advanced Practitioner, Wiley, 1990.

[HeMa88] E.C.R. Hehner and A.J. Malton. Termination Conventions and Comparative Semantics,
Acta Informatica, 25 (1988).

[Hehn93] E.C.R. Hehner. A Practical Theory of Programming, Springer-Verlag, 1993.

[Hoar69] C.A.R. Hoare. An Axiomatic Basis for Computer Programming, Comm. ACM, 12, Oct.
1969.

[Hoar85] C.A.R. Hoare. Communicating Sequential Processes, Prentice-Hall, 1985.

[Hoar94] C.A.R. Hoare. Unified Theories of Programming, Technical Paper, Oxford Computing
Laboratory, July 1994.

[Jack81] M.A. Jackson. System Development, Prentice-Hall, 1981.

[Jone90] C.B. Jones. Systematic Software Development using VDM, Prentice-Hall, Second Edi-
tion, 1990.

[King90] S. King. Z and the refinement calculus. In VDM ’90: VDM and 7 - Formal Methods
in Software Development, Third international symposium of VDM Europe, LNCS 428,
Springer-Verlag, 1990.

[Kron93] K. Kronléf, ed. Method Integration: Concepts and Case Studies, Wiley, 1993.

40

www.manaraa.com

[Morg94] C.C. Morgan. Programming from Specifications, Second Edition, Prentice-Hall, 1994.

[Paigd4] R.F. Paige. Formal specifications and theories of programming. Depth Paper, Depart-
ment of Computer Science, University of Toronto, October 1994.

[Paigd5] R.F. Paige. Higraph-based Predicate and Heterogeneous Specification, March 1995.
[Part90] H.A. Partsch. Specification and Transformation of Programs, Springer-Verlag, 1990.

[PHGI91] D.A. Penny, R.C. Holt, and M.W. Godfrey. Formal Specifications in Metamorphic Pro-
gramming. In VDM ‘91: Formal Software Development Methods, Fourth International
Symposium of VDM Europe, LNCS 551, Springer-Verlag, 1992.

[ScRo77] K. Schoman and D. Ross. Structured Analysis for requirements definition, IEEE Trans.
on Software Engineering, 3(1), 1977.

[SFD92] L.T. Semmens, R.B. France, and T.W. Docker. Integrated Structured Analysis and
Formal Specification Techniques, The Computer Journal 35(6), June 1992.

[Spiv89] J.M. Spivey. The Z Notation: A Reference Manual, Prentice-Hall, 1989.

[Ward93] N. Ward. Adding Specification Constructors to the Refinement Calculus. In Proc. FME
‘93: Industrial-strength Formal Methods, Springer-Verlag, 1993.

[Wing90] J.M. Wing. A specifier’s introduction to formal methods. IFEE Computer, 23(9),
September 1990.

[WiZa92] J.M. Wing and A.M. Zaremski. Unintrusive ways to integrate formal specifications in
practice. In VDM ‘91: Formal Software Development Methods, Fourth International
Symposium of VDM Europe, LNCS 551, Springer-Verlag, 1992.

[ZaJa93] P. Zave and M. Jackson. Conjunction as Composition, ACM Trans. on Software Engi-
neering and Methodology, 2(4), October 1993.

41

www.manaraa.com

