
www.manaraa.com

Heterogeneous Speci�cations and theirApplication to Software DevelopmentA Research ProposalRichard F. PaigeDepartment of Computer Science, University of Torontopaige@cs.utoronto.ca, http://www.cs.utoronto.ca/�paigeOctober 12, 1995AbstractWe describe a course of research examining formal and semiformal heterogeneous speci�ca-tions, i.e., compositions of partial speci�cations written in di�erent textual and visual notations.We describe why we believe this to be an interesting topic for further inquiry, and suggest whysuch speci�cations might prove bene�cial for use in software development.1 IntroductionFormal speci�cations are starting to become more widely used in the development of programs. Assoftware designers begin to investigate how formalism might be applied to their work, they soondiscover the wealth of speci�cation notations and methods that are available. They must come togrips with deciding which (if any) notations or methods to utilize in their work.Semiformal speci�cations have been used for many years in program development. These arenotations and concomitant methods{possibly with a partially or unspeci�ed formal semantic basis{which prove attractive to designers for many reasons, perhaps the most signi�cant being that thesemiformal notations are often easier and cheaper to apply than formal ones.There have been many formal speci�cation notations (and formal methods) described in theliterature. The �rst usable formal method was Hoare logic [Hoar69]. Weakest preconditions [Dijk76]have been used for program veri�cation with success. The re�nement calculus ([Back78], [Morg94])is a rigorous approach to program design, based on a mathematical notion of re�nement. Z [Spiv89]and VDM [Jone90] have met with some success in both subsidiary support and central constructionprogramming rôles. And predicative programming [Hehn93] is an alternative to the re�nementcalculus with a simpler semantics and de�nition of re�nement.There have been at least as many semiformal speci�cation notations (and methods) as formalones described in the literature. Examples include data ow diagrams, structure charts, StructuredAnalysis and Design [DeMa79], Jackson Structured Design [Jack81], and so on.It is our suggestion that much can be gained from using both formal and semiformal notationsand techniques in composition when constructing programs. Speci�cations written using multiplenotations are called heterogeneous:De�nition 1 A speci�cation is heterogeneous if it is a composition of partial speci�cations writtenin (two or more) di�erent notations. 1

www.manaraa.com

The bene�ts of studying such approaches to speci�cation would include the potential for:� obtaining more exibility in the application of both formal and semiformal notations andtechniques to software development;� smoothing the integration of formal speci�cation notations into development methods;� reducing the semantic gaps [PHG91] that arise in a development due to the use of an integratedformal notation;� constructing a \catalogue" of the relative expressiveness and limitations (both syntactic andsemantic) of notations.There are also several caveats to be kept in mind about using a heterogeneous approach:� For a given problem, it may be more di�cult to simultaneously employ multiple notationsinstead of a single notation.� It may not be cost or time-e�ective to take up the use of multiple notations in an attempt tosolve a problem.� It may be di�cult to determine a heterogeneous decomposition for a given set of functionaland nonfunctional constraints.In order to accomplish heterogeneous use, and to hopefully obtain the aforementioned bene�ts(while answering the caveats listed above), it is necessary to explore several questions:1. How are the various formal and semiformal notations for software development related?2. What kinds of theorems, development rules, and heuristics can we derive to assist us in usingheterogeneous speci�cations?3. What is the e�ect of using heterogeneous speci�cations within existing software developmentmethods?In this proposal, we discuss some of the important ideas and problems to be considered whenattempting to answer such questions. We present further detailed sub-questions that need to beconsidered, plus a description of how we plan to attack these questions. In an Appendix, we alsodescribe some preliminary research results, and discuss how we hope to extend them. In a secondAppendix, we present several examples of heterogeneous speci�cations and show how they mightbe used in development.We assume enough of a familiarity with the formal and semiformal methods described above tounderstand a fairly high-level discussion. We suggest consulting [Paig94] and the other referencesfor further details.Formal methods have experienced only limited use in \realistic" programming situations. Byshowing how the development notions used in formal and semiformal methods can be combined,we may further promote the use of formal methods in those design situations where they may bemost needed. 2

www.manaraa.com

2 Research DirectionsWe propose a plan of research that will have the following scope and approximate chronologicalcourse. The most signi�cant part of the work will be tied up in Parts 2 and 3.1. Identify a collection of formal and semiformal notations for study.We propose to examine selections from the following:� formal: the re�nement calculus, Z, VDM, the predicative notation, weakest precondi-tions, CSP [Hoar85], Hoare logic, functional notations (e.g., CIP-L [Part90]), algebraicspeci�cations and Larch [Gutt93].� semiformal: data ow diagrams, entity-relationship models, transition diagrams, Jacksondiagrams, program description languages, subsets of programming languages, structurediagrams, object-oriented notations, and decision tables.It is expected that the emphasis of our work will be on the italicized notations.2. Compare and unify the selected notations to form a heterogeneous framework.This will involve:� Translating speci�cations from one formal notation into a second formalism.� Giving a formal semantics to the semiformal notations. We will have to determine ineach case the formal notation(s) to use in giving the semantics1. Since in carrying outsuch formalizations we may have to place an explicit reading on otherwise semiformalnotations, we likely will have to evaluate the various interpretations to see which is themost appropriate and general for heterogeneous use.ASIDE. The results of these �rst two steps give us a framework within which wecan use multiple notations in writing speci�cations. The next stages focus on re�ningthe framework so as to obtain a better understanding of when di�erent notations canor should not be used. END OF ASIDE.� Identifying the relative expressiveness of both formal and semiformal notations. Forexample, we can express both angelic nondeterminism and havoc in the re�nement cal-culus, but cannot do so using the predicative notation. Here, we might also examinethe e�ects of extending notations to include previously unrepresentable speci�cations(if indeed such enhancements are possible). By examining such notational limitations,we provide ourselves with a better idea of when certain combinations will be bene�cial,since we will have more of a clear picture regarding the facilities{both syntactic andsemantic{which are lacking in each notation.� Attempting to see if the so-determined \less expressive" notations are signi�cantly lessexpressive (i.e., do the speci�cations that cannot be expressed in a particular notationallow us to describe systems that cannot be easily represented using other means? Dothey demonstrably simplify program development?)Preliminary results regarding these issues are discussed in Appendix A.1We can use formal heterogeneous speci�cations here if it seems worthwhile.3

www.manaraa.com

3. Examine methods for expressing, manipulating, and re�ning heterogeneous speci�cations.More precisely:� Develop theorems and rules for heterogeneous speci�cation manipulation, especially re-garding:{ speci�cation re�nement: monotonicity, transitivity, partwise, casewise and stepwisere�nement theorems for heterogeneous speci�cations.{ heterogeneous development: extending a re�nement relation to new notations andcompositions of notations. This allows a development process to be heterogeneous,i.e., it allows developers to use multiple re�nement relations and notations in devel-opment. This is discussed more in Appendix A.{ data re�nement.{ transfers of context between partial speci�cations in di�erent notations: viz., howshould it be done?{ satis�ability and feasibility of heterogeneous speci�cations.{ formalization by parts: this is a notion of speci�cation formalization analogous tore�nement by parts. To formalize a semiformal speci�cation by parts means toformalize subspeci�cations of interest while leaving all other parts unchanged. Wewish to develop this notion for various semiformal notations, for it has the possibilityof being very useful for when we want to obtain restrictions on the use of a formalnotation. Dually, we may want to examine \unformalization by parts", too.� Discuss some examples of compositions and how they can be applied to various pro-gramming situations. Instances of this might include:{ compositions of C code and formal speci�cations. This would allow programmers toinclude C statements like printf("%d\n",a); in formal speci�cations. This mightbe worthwhile since it could reduce the semantic gaps between speci�cation andimplementation notation and might make the formal speci�cation notation moreattractive to programmers. Furthermore, this would also allow (in certain cases)formal re�nements to C code. These issues are discussed in more detail in Part 4.{ compositions of data ow diagrams (or other graphical notations) and formal spec-i�cations: when are they feasible, and{notationally{how is it accomplished?{ high-level descriptions of software architecture via heterogeneous speci�cations.� Examine criteria for suggesting whether or not a composition of notations might proveto be bene�cial. We might base this on: (a) the simplicity of combined use (with respectto re�nement and semantic de�nitions); or (b) the expressiveness of combined use. Wewill also have to examine the basic notion of when notations can feasibly be combined inorder for us to be able to attempt to examine when they can be bene�cially combined.� For semiformal notations, determine if there are non-trivial notions of semiformal re�ne-ment. Since we are able to give a formal semantics to certain semiformal notations, wecan perhaps extend the re�nement relations of various formalisms to these semiformaldomains. We will need to develop theorems describing how to use these extended rela-tions. For example, it should be possible to formalize the notion of data ow diagramre�nement in various situations.� For semiformal notations, determine speci�cation combinators. For the diagram-basednotations, examine the notion of \diagrammatic composition" (i.e., if we have a formal4

www.manaraa.com

semantics for a diagram, we can, theoretically, compose it with another diagram. Howshould we denote such compositions?)� Examine the construction of a small visual notation (e.g., see [HarD88]) for representingformal speci�cations. Such a facility will be important for facilitating the compositionof diagrams and formal speci�cations, and may be useful in itself for its capability ofexpressing formal speci�cations visually. We will consider the use of a higraph-likenotation here.ASIDE. We should clarify now that the emphasis of our work is not on the transla-tions developed in Section 2. We are much more interested in the actual heterogeneousspeci�cations themselves, how they are created, and how they can be used. Developmentof the translations is, of course, necessary in order to make our presentation concrete, butthe rôle they play in our work is secondary to that of the speci�cations and compositionsthemselves. END OF ASIDE.4. Examine the e�ects of heterogeneous speci�cations on existing development methods.There are two particular cases of this which interest us (although all permutations will beexamined in some way):� Formal-formal compositions: How does our ability to compose speci�cations in multipleformal notations a�ect a software development method that is or can be based on oneof the notations? (This would be partially answered in the preceding section.)� Semiformal-formal compositions: How does our ability to compose semiformal and for-mal speci�cations a�ect a development that is based on the semiformal notation? Forexample, if we can compose Jackson diagrams with predicates{or, equivalently, a visualformalism used to represent predicates{how does our use of JSP or JSD change whenwe use the compositions in development? Can we introduce compositions in such a wayso as to reduce the semantic gaps that arise between the phases of the developmentprocess?It is this last instance of heterogeneous speci�cations which strikes us as quite interesting.It may be possible{by using heterogeneous speci�cations and, in particular, semiformal andformal compositions{to make formal methods more acceptable to the industrial programmer.By demonstrating how the use of mathematics-based methods can be combined with theuse of current (and future) software development techniques and semiformal notations, wemake our formal methods more viable, in the sense that the use of the formal method will berestrictable2 and may be integrated into an existing software development process.By considering heterogeneous semantics in this context, we essentially attempt to answer twoimportant questions:(a) How can we integrate a formal method into a software development method?(b) How can we obtain more exibility in using a formal method in realistic software con-struction situations?Question (a) has been considered to a degree by others; for example, see [SFD92] or [PHG91].The former work examines formal and informal integrations of Z, VDM, and algebraic spec-i�cations with Structured Analysis and Design. The latter paper considers metamorphic2The method need only be used when desired (or necessary) in a particular problem.5

www.manaraa.com

programming. We propose attempting to formulate answers to (a) and (b) via the route ofheterogeneous speci�cations, and in doing so hope to minimize some of the complexity andexpense of applying formal methods in large-scale software construction. In the process, wealso hope to examine issues of reuse, maintenance and evolution, and restrictability.ASIDE. One perspective on the work we are describing is that it is part of an attemptto �t program design calculi into software development processes. This problem (which isclosely related to formal speci�cation integration [SFD92]) has received limited discussionin the literature. There are several ways in which one might think of carrying out such anintegration. The ideal place in a standard model of software development to perform theprocess is in the speci�cation and design phase. This introduces some problems:� The transition from the notation used in analysis to the formal notation used in spec-i�cation and design will be complicated. Signi�cant semantic gaps arise.� The formal speci�cation used in the design phase must adequately describe the soft-ware architecture speci�ed in the analysis phases. Unfortunately, many program designcalculi notations are poor at making such descriptions (mostly due to the unimple-mentability of certain speci�cation combinators, and the lack of abstraction mecha-nisms).� With such an integration, making the transition to code is in many cases prohibitivelycostly, since expensive formal re�nements (with or without detailed proofs) must becarried out.Our attempt to (partially) solve these problems is based on not using only one notation inspeci�cation and design, but rather several simultaneously: (at least) one formal notationin arbitrary composition with project-speci�c semiformal notations.Ideally, we want to be able to write speci�cations with arbitrary intermixings of for-mality and semiformality. Currently{without allowing compositions{we typically use onlythe two extreme cases of intermixing: formal speci�cations; and semiformal (or even infor-mal) speci�cations. By allowing arbitrary compositions, we can reach the middle groundbetween the two extremes, which should prove eminently useful when used in large-scaledevelopment. END OF ASIDE.One of the key ideas to keep in mind is that designers should not be restricted in terms ofthe notation they choose to use for speci�cation and development: they should be able touse whatever notations (and development methods) they need{providing that the notations inquestion can be formalized3! From our point of view, there is no single programming languageor formal speci�cation notation or semiformal notation that should always be used whendeveloping software. While there may always be a core notation or development method usedin a particular setting, circumstance and developer experience should dictate the notationsand development processes which are to be used for each task.5. ExamplesWe hope to attempt a case study{perhaps one large, or several small examples{of how touse heterogeneous speci�cations in development. We plan to pay particular attention to therôle that re�nement plays in developing the heterogeneous speci�cation. Three fairly simpleexamples are presented in Appendix B.3Of course, predicated on other design constraints. 6

www.manaraa.com

3 Related WorkOur notion of heterogeneous speci�cation might have �rst arisen with the work of Hehner andMalton [HeMa88] on comparative semantics, and Dijkstra [Dijk93] and Hoare's [Hoar94] work ontheory uni�cation. In turn, these works have their roots with multiparadigm languages [Hail86],and wide-spectrum languages (e.g., see [Part90]). The terms compositional speci�cation and multi-paradigm speci�cation (both of which are closely related to our heterogeneous speci�cation) receivedrecent notice with the work of Wing [Wing90] and Zave and Jackson [ZaJa93]. Abadi and Lam-port's [AbLa93] transition-axiom method o�ers an approach similar to Zave and Jackson's{in thatboth o�er a common semantics that can serve as a framework for many di�erent notations{but theformer's e�orts are focused on concurrent systems, and are not intended to facilitate multiparadigmspeci�cation. Astesiano and Cerioli [AsCe93] describe an initial attempt at providing a foundationfor multiparadigm speci�cation.Related to the compositional or heterogeneous speci�cation notion is the concept of methodintegration{combining two or more methods to form a new, hopefully more useful technique.[SFD92] contains a good overview of (informal) integrations of Structured Analysis with VDM,Z, and other formal notations. [Kron93] is a general overview of method integration.Zave and Jackson (whose work is closest in spirit to our own) take something of a di�erentapproach to speci�cation composition than we do: while we are concerned with semiformal speci�-cations and the e�ect of compositions on development methods, they are focused more on semanticde�nitions and consistency. Their work is also typically intended for use with a particular class ofproblems; our approach is apparently more general. One of the main distinctions between theirwork and ours is that they translate all notations into a new (and very general) notation, whereaswe recognize that it is very likely that any heterogeneous speci�cation will make use of only a fewnotations{for reasons of manageability. Under this premise, we can take one of three courses ofaction:1. Translate all partial speci�cations in the composition into the most expressive{though notnecessarily the easiest to use{notation.2. Translate all partial speci�cations in the composition into the notation in which we want tocarry out re�nement and development, and therefore restrict our use of notation speci�callyto the translatable elements in each formalism.3. Develop theorems and rules that allow us to carry out re�nements (both formal and semifor-mal) over compositions.Our work will focus on 2. and 3.Zave and Jackson o�er a further piece of motivation for considering heterogeneous speci�cations:such notions make it possible to use much simpler speci�cation languages than what are nowconsidered to be state of the art. There seems to be two reasons for this: (i) if we can composea number of languages freely, there is no need to extend a language with features that anotherhas; and (ii) a heterogeneous framework subsumes and can replace features{such as compositionoperators{found in many languages. For these and other reasons, we consider it worthwhile toexamine heterogeneous speci�cations. 7

www.manaraa.com

4 ConclusionsWe have proposed a course of research examining heterogeneous speci�cations and their use insoftware development. We have identi�ed several important problems that should be discussed,and have suggested some general approaches for attempting to solve them. We have also describedseveral of the fundamental issues associated with heterogeneous speci�cations in general. Finally,we have provided (in an Appendix) initial research results related to formal and semiformal het-erogeneous speci�cations, and (in a separate Appendix) examples of heterogeneous speci�cationand development. Much work remains to be done, concentrating on expanding the results pre-sented herein, extending the results to further semiformal domains, and integrating the results intothe software development processes associated with the notations. Work has begun on studyingthese topics, especially with respect to the semiformal notations, such as those used in JSD andStructured Analysis. Hopefully, our results will show that heterogeneous speci�cations can be usedproductively in constructing programs.A Initial Research ResultsIn this Appendix, we briey recount some of the initial research results we have obtained. Spaceprevents us from including all the details and, indeed, all the results we have determined. Instead,we summarize a few of the most interesting of the preliminary �ndings, and leave the remainderfor another time4.In order to avoid complications, we assume throughout this appendix that all notations usethe unprimed-primed convention of Z and predicative programming to represent initial and �nalvariables.A.1 Comparative SemanticsHere, we describe some of our initial �ndings with respect to comparing the semantics of severalformalisms. In other words, we show how a few formal notations{Z, VDM, the re�nement calculus,weakest preconditions, and the predicative notation{are related. This is the �rst step towardsallowing these formal notations to be used in composition.Our research plan includes further examination and development of this material. We alsoplan to extend the comparative semantics to other domains, including both formal and semiformalnotations.A.1.1 Predicates and speci�cation statementsLet frame w � P be a predicate speci�cation (as in [Hehn93]) not involving time, i.e., there willbe no references to the time variables t and t0 in P . We require that the programmer specify theframe w.The speci�cation frame w � P is translated to the speci�cation statementw : [:8w0 � P; P]under an appropriate syntax-directed translation. The translation is approximate since P does nottalk about time while its speci�cation statement translation does (in a restricted sense, although4Say, a thesis proposal. . . 8

www.manaraa.com

for every P there is a re�nement calculus translation). The precondition in the translation is truefor all prestates from which P must terminate.ASIDE. In order to complete our translations with these two notations, we must also dealwith predicate speci�cations mentioning time. While we have determined such a translation,we omit it here. We also plan to examine more thoroughly a simpler version of the translationdescribed above, with which we lose our ability to talk about nontermination but acquire lesscomplicated manipulation rules. END OF ASIDE.The reverse translation is easy to describe. Providing that the speci�cation statement is notangelic5, the speci�cation statement w : [pre; post] is almost the same as:frame w � (pre) post):The \almost" is due to the fact that the predicative notation cannot be used to write angelicspeci�cations6 , while the speci�cation statements have this capability (demonic speci�cations arepermissible in both). Furthermore, we lose a bit of information in the translation and are no longerable to talk about time in the predicate formulation. This can be eliminated by transforming topredicate speci�cations that include time descriptions, or by including a boolean variable in thetranslation used to indicate termination, or lack thereof.A.1.2 Re�nement calculus and weakest preconditionsThe mapping from speci�cation statements to weakest precondition predicate transformers is well-known: Morgan gives a weakest precondition de�nition of speci�cation statements in [Morg94]. Thereverse transformation is somewhat more complex and is derived from [HeMa88]. We simply presentthe translations, and direct the reader to the references for further information and examples (�should be read as \is translated to").wp(w : [pre; post]; R0) =̂ pre ^ (8w0 � post) R0);wp(S;R0) � � : [wp(S; true); (:wp(S;�0 6= �0))[�0=�0]];where � is a frame of variables determined by the programmer, with �0 not in �. (For the calculationof wp in the postcondition, the �0 are the variables.) Recall that wp(S; true) is the weakestprecondition for the existence of a time bound.ASIDE. It is also possible to translate between predicative programming speci�cations andweakest preconditions. A predicate speci�cation S can be mapped to the weakest preconditionwp(S;R0) = 8�0 � (S) R0):Given a weakest precondition wp(S;R0) over state �, it can be translated to the predicate(:wp(S; �0 6= �0))[�0=�0];where �0 is not in �. This latter translation, unfortunately, is not one-to-one: abort and havocare both mapped to >, while any angelic speci�cation is mapped to its demonic dual. END OFASIDE.5The basic angelic speci�cation is the angelic update fR0g (for predicates R0), which satis�es wp(fR0g; Q) =9�0 � R0 ^Q0 for all predicates Q0.6Interestingly, the mapping from speci�cation statements to predicates transforms an angelic assignment into ademonic assignment. Thus, we can remove our restriction on not translating angelic speci�cations, providing that wedo not mind our translation being given a demonic interpretation.9

www.manaraa.com

A.1.3 Re�nement calculus and VDMWe now describe a relationship between the re�nement calculus and VDM. We start by assumingthat there is a syntax-directed translation between notations; such a mapping is not di�cult toconstruct7. The translation from VDM pre- and postconditions to speci�cation statements is thenimmediately obvious: pre P; post Q � � : [P;Q];for a frame � speci�ed by the programmer. In fact, under syntax, this mapping is almost invertible;the postcondition Q in the mapping from the re�nement calculus to VDM may contain appropriateframe axioms (although this can be subsumed by using the VDM equivalent of frames).A.1.4 Z and the re�nement calculusThe �nal set of translations we describe are between Z and the re�nement calculus. One directionof the translation has been noted in the past [King90]; we merely summarize these results here.The mapping from a Z schema to a re�nement calculus speci�cation statement is quite straight-forward and was described in [King90]. There is �rst a syntax-directed translation from Z schemasto an intermediate form (mapping primed variables to unprimed variables, etc.). Then, the Zschema Op ::= [�S; i? : I ; o! : O j pred]can be mapped into the following speci�cation statement:w : [(9w0 : T j inv � pred)[w0=w]; pred];where inv is a state invariant obtained from the � schema in the declaration of Op, and w consistsof variables in S together with the outputs. See [King90] for more details.The reverse mapping (from the re�nement calculus to Z) is less straightforward, since it has tobe left to the programmer to decide how to decorate variables (as input or output) in the resultingschema, which variables to declare in the current schema, etcetera. However, supposing that thiscan be done, the speci�cation statement w : [pre; post] can be translated to the following schema(ignoring input and output decorations):S ::= [��; �w j pre ^ post]:In the schema, � is the set of all scoped variables not in the frame. Since the speci�cation statementdoes not contain declarations, further declarations are not needed in the Z equivalent (although thevariables will have to be declared eventually). This mapping holds under an appropriate syntax-directed translation. Notice that Z cannot express magic, i.e., Z speci�cations must be feasible(unless we extend schemas to include pre=post pairs, which we will consider another time).ASIDE. With the translations all de�ned, we might like to know something about theirmutual consistency, i.e., as a set, do the translations provide consistent results when applied tothe same speci�cation? While we do not pursue this question here, we plan to examine it indetail another time. END OF ASIDE.7We do not use the logic of partial functions basis for VDM in these translations.10

www.manaraa.com

A.2 Heterogeneous Speci�cationsWe have shown how to translate{as much as possible{between the �ve formalisms shown in Figure 1.
Z

Predicative programmingVDM wp(S;R)w : [pre; post]Figure 1: Notation translationsThus, for (almost) any speci�cation S in one notation, we can express S in (almost) any of theother notations we have mentioned. We now sketch how this facility allows us to use heterogeneousspeci�cations in programming.In each of the notations mentioned, there is a collection of speci�cation combinators{operatorsfor combining speci�cations in various ways. For example, sequential composition, disjunction andconjunction are all widely-used operators, though not present, nor given the same interpretation ineach of the formalisms mentioned.Since we now have a way of expressing speci�cations from one notation in another notation, itbecomes possible to extend the domain of de�ned operands of the combinators to include speci�ca-tions written in di�erent notations.For example, let P be a predicative speci�cation. Then the speci�cationP ;w : [pre; post] (1)can be given the following predicate semantics:9�00 � P �0�00 ^ (frame w � (pre) post))��00 ;where the sub- and superscripts indicate that the subscript variables are to be substituted for thesuperscript variables. We could also give a semantics to the dependent composition by expressingP as a speci�cation statement (although we will not obtain exactly the same interpretation, ingeneral). This would be accomplished by using the following result.Theorem 1 Using ; to denote sequential (relational) composition, the following relation holds:w : [pre0; post0];w : [pre1; post1] = w : [pre0 ^ 8w0 � (post0) pre1[w=w0]); post0; post1]:This result is quite useful. We would use it to investigate when the predicative and re�nementcalculus semantic bases provide di�erent or identical interpretations.The fact that we have described translations between notations means that we can write for-mal speci�cations as a composition of partial speci�cations in arbitrary (formal) notations. If oneparticular notation (say, Z) is useful in specifying one part of a problem, but predicative program-ming is useful in another part, it is considered to be perfectly acceptable to use both notations in11

www.manaraa.com

composition. Of course, such compositions may not always prove to be bene�cial; such judgmentswill depend upon both functional and nonfunctional constraints.Such compositions may potentially make a design calculus, like predicative programming, evenmore usable in programming-in-the-large situations, since they can be combined with formal spec-i�cation notations like Z which are very useful when applied in a subsidiary support rôle. Hetero-geneous speci�cations allow us to restrict how we apply a calculus to solving a problem. This iscrucial when we are using such a facility for programming in the large.We now present some useful theorems describing properties of the re�nement relations((of thepredicative methodology) and v (of the re�nement calculus) when applied to certain heterogeneousspeci�cations. We begin by giving a formal de�nition for re�nement in both cases, using a wp basisfor the re�nement calculus. In the following theorems, let P and Q be predicate speci�cations(assuming that both speci�cations start with frame) and S and T be speci�cation statements.De�nition 2 A speci�cation P is re�ned by a speci�cation Q if8�; �0 � (P (Q):De�nition 3 A speci�cation S is re�ned by a speci�cation T (written S v T) if8R0 � wp(S;R0)) wp(T;R0):Theorem 2 If S v T then P ^ S v P ^ T .Theorem 3 Let predS and predT be the predicate speci�cation equivalents of S and T (assumingS and T are not angelic). If 8�; �0 � (predS (predT) then P _ S v P _ T .Theorem 4 If S v T then P ;S v P ;T .It turns out that the theorems we have shown are useful special cases of two general theorems onre�nement over heterogeneous speci�cations. In the following, let P and Q be in one notation (say,N), with P̂ and Q̂ their translations into a second notation, say N̂ . Assume that the translationsof P and Q into P̂ and Q̂ are information preserving, i.e., P and P̂ have equivalent de�nitions ina formalism at least as expressive as N and N̂ . Let � be a combinator of N̂ over which partwisere�nement can take place, and let S be a speci�cation in any notation whatsoever. Finally, let �be a reexive and transitive re�nement relation. The proofs of these theorems follow directly fromthe assumption of monotonicity, and the de�nitions.Theorem 5 If P � Q and � is monotonic over �, then P � S � Q � S.Theorem 6 Suppose � is not monotonic over �, but there exists a re�nement relation @ in N̂which is monotonic over �. If P̂ @ Q̂ then P � S @ Q � S.What these theorems tell us is that the monotonicity and transitivity of (and v are almostcompletely preserved and we can apply the appropriate re�nement relation to the appropriatenotation over a composition without a corresponding change of notation, in most cases. Even whenwe are required to change notation, the transformation is (almost) completely syntactic (i.e., fromw : [pre; post] to frame w � (pre) post)) and in doing so, we move to a notation with a simplernotion of speci�cation re�nement (i.e., boolean implication). From a practical viewpoint{and interms of re�nement{the change in notation is justi�able.12

www.manaraa.com

We previously mentioned the notion of a heterogeneous development, where re�nement steps in aderivation can be performed in di�erent notations. In other words, at each stage in a development,we are able to use whatever notations or re�nement relations we so choose. A preliminary resultalong this line is the following one.Theorem 7 If pre ^ 8�0 � (post) P) then frame w � P (w : [pre; post] and frame w � P vw : [pre; post].We envision expanding this concept to other formal and semiformal notations, so as to obtainmore freedom in developing programs heterogeneously.Another useful result regarding heterogeneous development is the following.Theorem 8 If S v T then 8�; �0 � S (T .In Theorem 8, S and T are speci�cation statements, so in the consequent there is an implicittranslation into predicates. The immediate impact of Theorem 8 can be seen in its e�ect onTheorem 3: P _ S v P _ T also holds if S v T .We now briey consider an interesting special case of formal heterogeneous speci�cations inorder to explore some of their features. To be more speci�c, we consider the problem of addingso-called speci�cation constructors to the re�nement calculus.This problem was examined by Ward [Ward93], who considered adding generalizations of Zschema conjunction and disjunction operators to the re�nement calculus. The rationale for con-sidering this extension was to facilitate the construction of large speci�cations from smaller ones.A problem with Ward's work is that the speci�cation combinators of Z are not monotonic withrespect to the re�nement relation v (we can easily prove this using heterogeneous speci�cations).We take a slightly di�erent approach{that of heterogeneous speci�cations{and (mostly) preservethe property of monotonicity.Our goal here is to give a semantics to expressions such as:w : [pre; post]_ x : [pre0; post0];w : [pre; post] ^ x : [pre0; post0]:We do this by interpreting _ and ^ as logical disjunction and conjunction, respectively, andtransform the speci�cation statements into their equivalent predicate form. We perform manipu-lations and then reverse the transformation. By doing so, we obtain some useful results. Beforepresenting them, we make a de�nition, taken from [Ward93].De�nition 4 A speci�cation statement is frame complete if its frame consists of all variablesmentioned in the pre- and postcondition.It is easy to make a speci�cation statement frame complete by using the law Expand Framefrom [Morg94]. With this de�nition in mind, we now present some theorems (omitting all proofs).In the following, let S = w : [prew; postw] and T = x : [prex; postx].Theorem 9 If neither S nor T are angelic, thenS ^ T = w; x : [(prew ^ :8w0 � postw)_ (prex ^ :8x0 � postx); (prew) postw)^ (prex) postx)]:13

www.manaraa.com

Theorem 10 If neither S nor T are angelic, and w = x thenS _ T = w : [(prew ^ prex) ^ :8w0 � (postw _ postx); (prew) postw) _ (prex) postx)]:In Theorem 10, we are assuming that the frame describes exactly the variables of interest.Theorem 11 If S is frame complete and not angelic then:S = w : [pre) 9w0 � post; pre^ :post]:Further theorems and properties have been determined (especially regarding partwise re�ne-ment), and we plan to compare our results with those of [Ward93] to discover respective strengthsand weaknesses.ASIDE. In work we do not present here we investigate a simpler (yet slightly less expressive)translation of predicates into speci�cation statements. This translation leads to results di�erentfrom those presented above. Part of our work will entail an evaluation of both translations. Ourinvestigations to date suggest that the loss of expressiveness is not signi�cant and we hope topresent evidence to support this hypothesis. END OF ASIDE.Space prevents us from including all the details (and proofs of our results), but part of ourgeneral plan includes expanding our results to further formal domains, and generalizing to allowcompositions with semiformal speci�cations. We have already begun to examine such issues, as wenow mention.A.3 Semiformal Speci�cationsWe (very briey) present a summary of a few of our �ndings with respect to work on: (a) giving aformal semantics to various semiformal notations; and (b) describing the changes that the abilityto use heterogeneous speci�cations place on any associated development process. Our descriptionsare necessarily brief and omit all of the formal details.A.3.1 Structured Analysis/Design-related Results� Data ow diagrams can be formalized in Z [SFD92] or in the predicative notation (placingan interpretation on the diagram as operations on a state). This can typically be done incombination with control ow diagrams and the data dictionary. In fact, we have foundthat a useful extension to the data dictionary concept in such integrations is to includedata transformation details. These formalization details will be helpful when we considercompositions of data ow diagrams with formal speci�cations, and in integrating the formalnotation into SA/SD.� It is also possible to extract a data ow diagram (with a particular interpretation) from certainZ speci�cations. We have also considered extending this notion to extraction of higraph-basedspeci�cations, or dependency trees based on Z schema interconnections, so as to reduce theinformation loss in the process.� Entity-relationship diagrams can be expressed in Z [SFD92] or in the predicative notation.Particular care has to be taken with ensuring that the various relationships (many-to-one,one-to-one, etc.) and \opting in and out" of a relationship are properly described.14

www.manaraa.com

� The development process for Structured Analysis (based on the aforementioned diagram nota-tions) needs to be changed, to include mention of: (a) proofs of data ow diagram re�nement;(b) inclusion of formal speci�cations in the data ow diagram; and (c) the transition from astandard or heterogeneous data ow diagram to a formal speci�cation or another (formal orsemiformal) diagram paradigm.� We have commenced preliminary study on heterogeneous speci�cation integration into theSADT methodology, concentrating on: diagram alterations, changes to the modelling process,and augmentation of the iterative review process to include new notations. More work remainsto be done, including considering how heterogeneous speci�cations should be presented to atechnical review committee (e.g., possibly as SADT box abstractions).A.3.2 JSD results� Process connections can be formalized. In doing so, we have chosen to use predicates, but thisrequires a notation extension to add a program counter to the semantics (we are investigatingif this can be avoided). The details of this remain to be completely worked out; furthermore,we have to evaluate if it is worthwhile to make such a formalization.� Jackson diagrams and structure text are straightforward to formalize (although some of theloop-constructs result in complex speci�cations).� Work remains to be done on exploring the changes to JSD that occur after adding hetero-geneous formal speci�cations at both the visual and textual levels, especially with respect tohow the interface with the \real world" (as described in [Jack81]) must be dealt with.A.3.3 Programming languages and PDL resultsWe have commenced the determination of a formal semantics for various programming languagesubsets. Our goal is to allow the use of subsets of certain real programming languages in compositionwith formal speci�cations. Not only does this allow us to restrict the use of a program designcalculus, but it also permits us to carry out re�nements to the level of (real) programming languagecode. In particular, we plan to consider C and C++. For C++, we expect to come up with predicatespeci�cations for (some of) the object-oriented constructs in the language. Another approach wouldbe to integrate algebraic types (e.g., as in CIP-L) into a predicate-based formalism. Of course, theextent to which we consider such compositions and integrations will be dependent on the utility ofsuch descriptions.We have also developed a formal semantics for a typical program description language, andhope to be able to use this in composition with formal speci�cations. Such compositions will provehelpful when examining integrations of JSD and formal speci�cation-based techniques.A.3.4 Other resultsWe briey summarize some of the other general research results we have (partially or completely)obtained.� We have commenced work on combining JSP and Structured Analysis through heterogeneousgraphical speci�cations. Work remains to be done on extensions to the methodological aspectsof the resulting composite technique. 15

www.manaraa.com

� We have been attempting to understand how to integrate formalization by parts into theframework, for use in writing and composing speci�cations which involve large diagrams (orlarge formal texts).� We have determined how to extend a predicative parallel composition operator to the re�ne-ment calculus and Z. We will need to evaluate the utility of the operator when comparedwith, for instance, action systems [Back90].� We are examining how to use a topovisual formalism (inspired by higraphs) to depict bothlarge and small formal speci�cations. We need to understand how to describe text-based spec-i�cations in a visual manner in order to use them in composition with other visual notations,such as data ow diagrams. Our initial work on \higraphs" suggests that they will prove tobe convenient for heterogeneous use, and for formalizing many of the structural aspects oflarge formal speci�cations. Our notation allows us to depict data and control ow (along withmore abstract relationships), as well as structure and hierarchy, and permits us to abstractaway as much detail in the speci�cation as is necessary. See [Paig95] for more details.� We are studying how to use heterogeneous speci�cations in nonlinear development processes(e.g., see [PHG91]). In such situations, it may be easier to \reverse engineer" speci�cationsfrom implementations, due to the heterogeneous nature of the �nal speci�cation. This mightprove to be useful in allowing designers more exibility in developing software.This is only a brief summary of some of the results we have determined; many of the details(especially regarding Part 4 described in Section 2) and more useful examples remain to be workedout. Extension of the approach to SADT, SSADM, and other semiformal notations and methodsmust occur, too, although we should add that we have many of the preliminary details so far.B ExamplesIn this appendix, we consider three examples presenting the use of heterogeneous speci�cationsin development. The �rst example{which focuses on integrating predicate speci�cations with astructured method{demonstrates an instance of a semiformal development, where formal speci�-cations are used only when required or convenient for the problem at hand. Our second example,a combination of predicates and speci�cation statements, presents a precise formal heterogeneousspeci�cation and its development into code. This might be termed an example of a formal het-erogeneous development. The �nal example describes how Jackson process diagrams and formalspeci�cations might be combined, in the framework of an applied example from chemical systemsmodelling.The reader should be aware that these \case studies" are only small examples (as they mustbe for presentation in this forum). They are not the only (nor necessarily the best!) approach inwhich heterogeneous speci�cations might be used to solve the problems. The manner in which suchspeci�cations should be used for a particular problem will depend heavily upon the developers, thenonfunctional constraints under which they must operate, and their interpretation of the problem.These examples are presented in order to demonstrate how heterogeneous speci�cations mightbe used in development, and to describe particular instances of some interesting{and nontrivial{speci�cations. 16

www.manaraa.com

B.1 First-come �rst-served simulationThe problem we wish to solve is that of constructing a simulator for a �rst-come �rst-served sched-uler. We wish to develop a solution for this problem using heterogeneous speci�cations, guidedby the Structured Analysis and Design development method [DeMa79]. Our heterogeneous speci-�cations will be based on predicates, combined with structure text, data ow diagrams, structurecharts, and programming language code. Compositions between these di�erent notations are jus-ti�ed by the framework (and translations) developed and described in Appendix A. We could usethis basis to{completely formally{develop an implementation, but we do not follow this path here.The initial requirements and problem explanation are as follows. We will see that, as is fre-quently the case with such descriptions, the presentation of what is required from the solution israther poorly stated.Write a program to generate data and to simulate a �rst-come �rst-served short-term scheduler.The program will have two parts: the �rst will generate a set of data to be loaded by the scheduler.The second part will simulate the operation of the FCFS scheduler on the data. The program shouldbe implemented in such a way so that the function of the generator is as independent as possiblefrom the simulator (so that the generator part can be moved into a separate program if necessary).Recall that a short-term scheduler consists of a queue, holding waiting processes, and programsthat accept arriving processes and send processes to the CPU for execution at the appropriate time.The generator part of our program constructs data to be loaded by the scheduler. It generatestwo vectors of data, one holding random CPU burst lengths, and the other holding randomarrival times of processes. The CPU bursts should be generated so that 80% of the bursts areuniformly distributed between 0:1 and 1:0, and the remaining 20% are uniformly distributed between1:0 and 10:0. The arrival times of the processes must have a Poisson distribution. The time intervalbetween two contiguous arrivals is given by:�� loge xwhere x is a random variable uniformly distributed between 0 and 1. The parameter � is chosenso that the ready queue is steady, i.e., so that the rate of arrivals to the queue and the rate ofdispatching processes from the queue are approximately the same. A value of � = 1:3 should su�cefor this FCFS simulation (although if a di�erent scheduling algorithm, say, round-robin, were used,the constant would clearly be di�erent). The vectors of data should be stored in a �le, data, inorder to meet our independence requirement.The second part of the program is the FCFS simulator. The vectors from data are loaded, andthe CPU bursts are partitioned into ten groups. Group 0 contains bursts ranging in length from 0:1to 1:0. Group 1 contains bursts from 1:0 to 2:0,. . . , and Group 9 contains bursts from 9:0 to 10.Average wait times must be calculated for each group. The number of processes in each group, thetotal wait time, and the average wait time should be output from the simulator for the generateddata. Waiting processes will be stored in the ready queue.For the most e�ciency, the ready queue for the scheduler should be implemented by a circularqueue of length MQL (a reasonable value for MQL is 100). When the simulation begins (i.e., attime = 0), the �rst CPU burst starts in the CPU. The next 20 bursts must already be in the readyqueue when this starts (this is the initialization of the ready queue before commencement). Thescheduler adds processes to the ready queue if they arrive before the currently-active process in theCPU �nishes. Upon completion, the current process is dequeued, and the process at the head of thequeue then begins execution. This process continues until either the queue destabilizes, or all theCPU bursts have been served.The statistics (average wait time, etc.), are best calculated when the scheduler dispatches aprocess from the ready queue to the CPU. Of course, you will have to keep track of the arrival timesof all processes in the ready queue (since the wait time of a process is T � arrivaltime).17

www.manaraa.com

The problem is described in a manner which is quite hard to understand. For this reason,we initially choose to use a structured approach to development. The general scheme followedin such an approach is to �rst present a data view of a solution to the problem. This is re�nedinto a modular presentation (in the design phase). Then, structure text is generated, and �nally,an implementation (which we shall describe in the programming language C) is constructed. See[DeMa79] for more detail.The �rst stage in our development is to generate a data ow diagram (DFD). In this example,our diagram will be heterogeneous, since we feel most comfortable constructing a solution usingmultiple notations. Our �rst (context-level) DFD appears as shown in Figure 2.
SCREEN

NUMBER

λ

stats

Program

Simulator

FCFSFigure 2: Level 0 context diagramNotice that this diagram is identical to one that could be produced under a standard structuredanalysis approach. Note as well that if we speci�ed the DFD bubble formally (which is certainlypossible, though likely not desirable at this stage), we would be able to have a completely rigorousdevelopment of a solution guided by the Structured Analysis and Design process. However, thesemiformal development process o�ered by the structured approach may very well be more conve-nient to use in many development situations (e.g., when building large programs) than a completelyformal one. We follow the semiformal and heterogeneous development path in this example, andleave the formal approach for another time.We now elucidate the DFD by splitting up the context diagram into its two constituent parts:the data generator, and the simulator. We specify the generator part using a (visual) predicatespeci�cation, since this is how we best understand the problem. In the DFD re�nement, we add a�le (an external resource) named data. The reason for performing this introduction is so that later,once we have reached code level, it will be possible to separate (both syntactically and in terms ofexecution) the generator and simulator code portions. This elucidation is shown in Figure 3.In Figure 3, random is a function generating a random real uniformly distributed between 0and 1 (it can be implemented, for example, by the C function drand48()). As well, MQL is themaximum length of the simulator's circular queue, and we use ; to denote relational compositionof predicates.Notice that in the visual predicate speci�cation of generator, we have made use of several dataobjects. These should be added to our data dictionary (along with their formal types, where known)and can be used in specifying other parts of the solution (constrained, of course, by scope). Noteas well that we are not restricted to using these precise data objects throughout the solution; wecan data re�ne them away as necessary, providing that we make the appropriate changes to thedata dictionary8. We could also use them{in certain cases, e.g., when data re�nement is simplysupertyping{in such a way so as to take advantage of foreknowledge regarding data transformation:8This process might be called data dictionary re�nement.18

www.manaraa.com

data

t’i-t(i-1)=
λ-

n:=random

∀t’0 = 0 ^

λNUMBER

*

c,t

i:1,..NUMBER .

ln(random)

(c’0=0.9*
random +
0.1 v
c’0=9*
random +
1.0) n<=0.80 =>

random+
c’i=0.9*

0.1
c’i=9*random
n>0.80 =>

 +1.0

Simulate

FCFS

SCREEN

stats

MQL
GROUPS

INITIAL

c,t

generator

Figure 3: Level 1 Diagram
19

www.manaraa.com

for example, if we know that a data object is to be rei�ed to an object of a particular type (andthis rei�cation is suitably documented), we can use the object as if it had the rei�ed type. Wemake the following data de�nitions now, and use them throughout the speci�cation as needed.MQL; INITIAL;NUMBER : natGROUPS = 10� : realc; t : [NUMBER � real]cell = \burstlength"! real j \arrivaltime"! realready : [MQL � cell]boundary; head; tail; length : natbursts; arrivals : [NUMBER � real]The next step is to elucidate the SIMULATE FCFS bubble. We do this using a heterogeneousdata ow diagram, as shown in Figure 4 (note that Figure 4 shows only the re�nement of therelevant bubble, and not the entire ow diagram).We have not speci�ed predicates Q and R in Figure 4, to keep the complexity down9. Theprecise de�nition of Q is as follows:Q = bursts0(i) = ci^ arrivals0(i) = ti:The reason why we have introduced arrays bursts and arrivals in the speci�cation of Q is sothat when implementing the simulator code portion we can eliminate array variables c and t, whichwe see are not needed due to the presence of the �le.To specify the predicate R, we note that it is a description of the FCFS simulator. Since it isoften best to use operational speci�cations to describe simulations, we make use of some programcode in this case. Recall that the queue to hold processes will be implemented in a circular fashion,and that when the simulation begins there are already INITIAL processes in the ready queue.time:=0; arriving:=INITIAL;while (stable) do (updatecount;marr:=MAX j:arriving,..NUMBER� (time+boundary>arrivals(j));for i:=arriving;..marr do (length6=MQL)) enqueue(bursts(i),arrivals(i)-boundary);arriving'=marr ^ current'=front;dequeue)In the speci�cation, stable = length>0 ^ length6=MQL, the constant boundary is the arrivaltime of process INITIAL� 1, and the predicate updatecount updates the statistics for the simu-lation (we do not worry about its speci�cation here, but it is trivial). The functions front, enqueueand dequeue can also be formally speci�ed; we do so because we understand them well in such aformat. enqueue is de�ned as follows:enqueue = �a; b : real � (head 6= (tail+ 1 mod MQL))) ready0 = (tail; \burstlength")! a j(tail; \arrivaltime")! b j ready ^ tail0 = (tail+ 1) mod MQL ^ length0 = length+ 1:9We certainly could write them visually, if we so desired.20

www.manaraa.com

Output

Statistics

R

GROUPS

ready, bursts,
arrivals

Place

INITIAL

in Queue

∀

Q arrivals
bursts,

Create &
Initialize

Queue

INITIAL

MQL

ready

SCREEN

stats

waitcount,

i:0,..NUMBER .

Simulate

Load

GROUPS,

data

c,t

Figure 4: Re�nement of SIMULATE FCFS
21

www.manaraa.com

The function dequeue is much simpler:dequeue = (head 6= tail)) head0 = (head+ 1) mod MQL ^ length0 = length� 1;while front is the simplest of all: front = ready(head):We now feel that we have su�ciently speci�ed the problem so as to be able to generate animplementation. (The structured approach suggests that we re�ne DFD bubbles until they are at alevel from which pseudocode can be easily generated. The heterogeneous variant of the structuredapproach would extend this DFD re�nement process to include the generation of any appropriatetext-based speci�cations{both formal and semiformal). However, the next stage in standard struc-tured analysis and design would be to describe a structure chart. Our heterogeneous structurechart would appear something like the one shown in Figure 5.
FCFS Simulator

bursts
arrivals ready

Place INITIAL

wait

arrivals
bursts

ready

ready

ready
data

data

P R∀

Q

wait

count
wait

count

countdata

Output
Statistics

Create/
Initialize

i:0,..NUMBER .Figure 5: Heterogeneous structure chartIn Figure 5, P is the formal speci�cation of the generator, and Q and R are as above. How-ever, one might reasonably say that a solution to our problem is suitably determinable from theDFD10. Thus, the usefulness of the heterogeneous structure chart can be called into question inthis situation. It is certainly possible to construct structure text (i.e., pseudocode) from the dataow diagram with little di�culty. In fact, if at this stage we decide to continue the developmentin a completely formal manner, we could formalize the DFD{or the structure chart{and proceedrigorously, after integrating P , Q, and R into the mix.ASIDE: Di�erent PathsAt this point in the development process{after the construction of a suitably low-level data owdiagram{there are several paths we might choose to follow:1. Continue with the SA/SD-guided heterogeneous development method, where predicate partswill be included in composition with the standard structured notations.10It never hurts to describe the system's modular structure using the structure chart.22

www.manaraa.com

2. Unformalize the predicate parts (say, to process speci�cations expressed as programs or pseu-docode), and proceed with a standard SA/SD development.3. Formalize the DFD (i.e., translate the structure of Figure 4 into a formal notation) andproceed with a completely rigorous development.These approaches run the gamut of development methods, ranging from completely semiformal(Method 2.), to completely formal (Method 3.), with an arbitrary mixture of formal and semiformaldevelopment in between (Method 1.). While we will follow 1. in developing a solution here (since webelieve that it best captures our understanding of the problem decomposition), we briey consideraspects of 2. and 3. here, for the sake of exploring some of the alternatives that other developersmay �nd preferable.UnformalizationThis development process step might arise when unforeseen or unfortunate nonfunctional con-straints come in to play. One might envision a scenario in which, after having introduced formality(in some quantity and some manner) into a development, our nonfunctional constraints are alteredin such a way so that we are unable to fully take advantage of the formal nature of aspects of ourspeci�cation. For example, perhaps the deadline for our project has changed, so that we do nothave the time to produce formal developments for the appropriate part of our system. Or, perhapswe have lost the services of some of our formal methods experts, and the personnel remainingon the project do not have the expertise necessary in order to read, write, and utilize the formalspeci�cations at hand. What we need to do here is to unformalize relevant parts of the hetero-geneous speci�cation (or, from another perspective, backtrack through the steps of heterogeneousspeci�cation construction), and continue with development using whatever semiformal approachesthere are at hand.The unformalized11 data ow diagram for Figure 4 might look something like what is shown inFigure 6 (note that there are many other unformalizations that may present more or less processdetail than is shown in Figure 6):This is an obvious (structural) unformalization of Figure 4, and is one that will let us continue,straightforwardly, with standard structured analysis and design (note that we may have to elucidatethe unformalized process bubbles). However, in unformalizing the heterogeneous DFD, we havelost a lot of the information12 that was present in Figure 4. It may be possible to save some of thisinformation; there are two obvious ways in which we might do this:� unformalize not only the structure of the heterogeneous speci�cation but also the text as-pects of the heterogeneous parts, and add this text to the (homogeneous) DFD as processspeci�cation parts (PSPECS).For example, from Figure 4, we might gather the following information for the generatorpart:process generatorinputs: NUMBER, �outputs: c, t11This is something of an unfortunate term: relatively speaking, Figure 6 is more informal than Figure 4, butcircumstance dictates whether or not the heterogeneous DFD should be considered formal in the �rst place.12This is unavoidable: unformalization is the inverse of a process which is by its very nature information-adding.23

www.manaraa.com

Output
Statistics

SCREEN

Generate

Data

data Create &

Init.

Load

data

Place
INITIAL
in queue

Simulate

c,t

bursts,
arrivals

MQL

ready

INITIAL

GROUPS

ready,
arrivals

λ
NUMBER

c,t

GROUPS,

bursts,

stats count, waitFigure 6: An unformalization of a heterogeneous speci�cationlogic: Compute the values of arrays c and t at 0. Fill in the rest of the arrays with random numbers, with80% of the burst times between 0:1 and 1, uniformly, and 20% uniformly between 1 and 10, and with thearrivals having a Poisson distribution.Again, information is lost in the unformalization process, but the amount in question is muchsmaller providing we add the above details as a process speci�cation.� Unformalize the structure of the heterogeneous parts recursively, i.e., attempt to capture(some of) the structure of the formal speci�cation parts as DFD process bubbles. Then, wecan try and apply the above process (i.e., unformalization of text parts) to gather even moreinformation semiformally.The result of such a process might be depicted as shown in Figure 7; the dotted lines encirclethe recursively unformalized parts. Notice that in this diagram we do not depict any of themore algorithmic details, which can be captured in process speci�cations as described above.
24

www.manaraa.com

data Create &

Init.

Load

data

Place
INITIAL
in queue

bursts,
arrivals

MQL

ready

INITIAL

c,tCompute

t0, c0

Uniformly
generate
NUMBER

cells

NUMBERλ

c0, t0

c, t

SCREEN

Initialize

Simulator

Exec.
current
process

Update

stats

Add
arrivals

Check for
simulation

completion

Output

statistics

ready,

current

ready,
arrivals

ready

GROUPS,
waitcount,

ready,
arrivals

stats

bursts, arrivals

bursts,

bursts,

ready

GROUPS

Figure 7: Recursively unformalized data ow diagram25

www.manaraa.com

FormalizationA second path we might choose to follow at this point in the development is a rigorous, formalone, in which precise speci�cations are constructed and are used{either in a subsidiary supportor a central construction rôle{to develop a �nal implementation. We might view this choice ofdevelopment process as being the ideal: in the best of all possible situations, we should like to beable to perform all development steps rigorously, via some initial formal speci�cation. Of course,this will not be possible in most development situations, due to both functional and nonfunctionalconstraints. This is the main reason why we believe that development path 1. is the most realistic(for this situation) among the given alternatives. Even so, there may be situations where a com-pletely rigorous development is desirous or necessary, so it behooves us to show how we may switchto one{in midstream, so to speak{during a previously semiformal heterogeneous development.The way that a transition to a formal development from a heterogeneous development can occuris by formalizing the (heterogeneous) semiformal speci�cation at hand. In our example, the mostdetailed semiformal speci�cation we are given is a heterogeneous data ow diagram with predicateparts (see Figure 4). To formalize this, we express the diagram in Z, with one schema per DFDprocess (this includes the predicate parts). A formalization (or, re-expression in Z), might looklike the following (we have, implicitly, added extra data stores representing state to the DFD ofFigure 4 in order to simplify the formalization process.)data ::= [c; t : seq R]Generator ::= [�data;�? : R;NUMBER? : N j P]Load ::= [�data; �Cells j Q0]Cells ::= [bursts; arrivals : seqNUMBER cell]Create and Init ::= [MQL? : N; �Ready]Place INITIAL ::= [�Ready; �Cells; INITIAL? : N]Ready ::= [ready : seqMQL cell]Simulate ::= [GROUPS? : N; �Ready;�Stats; �Cells j R]Stats ::= [count; wait : seqGROUPS cell]Output ::= [�Stats; stats! : T](The process for translating a DFD into Z schemas is given elsewhere, but it is straightforward,and in certain cases automatable. We have omitted type and data declaration details, but theseare straightforward as well, and resolve to creating a data dictionary. Unfortunately, this latterprocess is not automatable.)In the Z formalization, P , Q0, and R are all formal speci�cations, but are expressed as pred-icates. P is the predicate for the generator speci�cation of Figure 4. Q0 represents the predicate8i : 0; ::NUMBER � Q (with Q as before), and R is as speci�ed in Figure 4. The resulting set ofschemas and predicates is a formal heterogeneous speci�cation, except with predicative program-ming speci�cations as the invariants of Z schemas. We haven't yet described how to deal withthese kinds of speci�cations. To work with them, we have two options:1. Translate the schemas Generator, Load, and Simulate into predicates (this amounts toadding appropriate variable declarations and possibly frame conjuncts to a predicate), andleave P , Q0 and R untouched. The resulting formal speci�cation will be a heterogeneouscombination of predicate speci�cations and Z schemas. Formal development of an implemen-26

www.manaraa.com

tation can then proceed using theorems and rules like those developed in Appendix A, alongwith other standard formal techniques.2. Translate P , Q0, and R to Z notation and leave them as the bodies of the schemas in question.In this particular example, this amounts to a syntactic rewrite of P , Q0 and R (since allthree speci�cations are feasible). The resulting formal speci�cation will be homogeneous, andimplementation may proceed using any approach to development with Z.The decision as to which development path to follow{formal, semiformal, or heterogeneous{may occur at any time during an initially heterogeneous development. For example, we couldhave performed the unformalization of the heterogeneous speci�cation after the construction ofa heterogeneous structure chart, or after the development of heterogeneous structure text. Wemight have performed formalization, too, in similar places. The choice of when to perform suchformalizations or unformalizations will depend on the nonfunctional and functional constraints onthe development at the time the decision is made. The heterogeneous approach to developmentallows designers to take into account changes in constraints throughout the construction process,which will hopefully provide them with the exibility that they need for di�cult developments.END OF ASIDE.In attempting to construct an implementation of our solution, we choose to follow the pathof developing heterogeneous C code, which will mean we carry out all the �nal re�nements offormal parts at the text level. The resulting heterogeneous speci�cation is as follows, with P andR as above, with Q0 = 8i : 0; ::NUMBER �Q, and with the de�nitions of the functions enqueue,dequeue, and front as described earlier.#include <stdio.h>#include <stdlib.h>#define NUMBER 2000#define MQL 100#define GROUPS 10#define INITIAL 20main(){double bursts[NUMBER], arrivals[NUMBER];double boundary, time, wait[GROUPS];int i;long count[GROUPS];struct cell current;FILE *fp;char *fname="data";/* Generator */fp=fopen(fname,"w");P;fclose(fp);/* Create & Initialize Queue */ 27

www.manaraa.com

head=tail=length=0;for(i=0; i<GROUPS; i++){count[i]=0;wait[i]=0.0;}/* Load data */fp=fopen(fname,"r");for(i=0;i<NUMBER;i++)fscanf(fp,"%lf %lf\n",&c[i],&t[i]);Q';/* Copy into C data structures (this willbe eliminated later) */for(i=0; i<NUMBER;i++){bursts[i]=c[i];arrivals[i]=t[i];}current.burstlength=bursts[0];current.arrivaltime=arrivals[0];/* Place INITIAL in the queue */for(i=0; i<INITIAL; i++)enqueue(bursts[i],0.00);i=INITIAL;time=0.0;boundary=arrivals[length];/* FCFS Simulation */R;printf("\nGroup ");for(i=0;i<GROUPS;i++) printf("%7d",i);printf("\nCount ");for(i=0;i<GROUPS;i++) printf("%7d",count[i]);printf("\nWait ");for(i=0;i<GROUPS;i++) printf(" %6.1f",wait[i]);printf("\nAverage");for(i=0;i<GROUPS;i++) printf("%7.1f",(wait[i]/count[i]));printf("\n\n");} 28

www.manaraa.com

We consider this speci�cation to be formal: we treat the C code portions as predicates (evenif we are not willing to provide all of the C parts with predicate de�nitions. For example, thestatement boundary=arrivals[length] has predicate de�nition boundary:=arrivals(length).The declaration double bursts[NUMBER] has predicate semantics bursts:[NUMBER*real].ASIDE. There are several details we have not gone into in the above heterogeneous spec-i�cation. Foremost amongst these ideas is that of data re�nement. We will have to provideimplementations (in C) for the data objects contained in the (formal) data dictionary describedelsewhere, and for the extra declarations introduced in the heterogeneous speci�cation. Wemust be able to prove that these implementations are reasonable for the speci�cation as given.In this particular example, the data re�nements to be proven are relatively trivial (we do notget into issues of precision here, since we treat C as a mathematical notation. The notions ofoverow, etcetera, while important, are implementation concerns, and are beyond our interesthere.), and resolve to syntactic translation. In other situations, the proof obligations will bemore complicated, and will require more e�ort to discharge. END OF ASIDE.The next stage is to re�ne the speci�cations P , Q0, and R to code. This is a straightforwardprocess. We describe the re�nement to P here:t0:=0;n:=random;c0:=if (n<=0.8) then .9*random+.1 else 9*random+1;i:=1;while (i<NUMBER) do (n:=random;ci:=if (n<=0.8) then .9*random+.1 else 9*random+1;ti:=-lambda * ln(random) + t(i-1);i:=i+1);The �nal re�nement to the simulator speci�cation R might look something like the following:time:=0; i:=INITIAL;while (stable) do(updatecount;while((time+boundary>arrivals(i))^(i<NUMBER)^ (length6=MQL))do(enqueue(bursts(i),arrivals(i)-boundary);i:=i+1);current:=front;dequeue)The re�nement for Q0 is easy, and we omit it.We can now translate these implementations into C code. When we �nally do this, we chooseto eliminate the arrays c and t, and write the computed burst and arrival times directly to the�le data as they are computed, for the sake of saving storage. We omit the code here, as it is astraightforward translation from the developed speci�cations above.The heterogeneous speci�cations we have used in this example allowed us to introduce the pred-icate speci�cations13 at the most convenient time for us as designers. It appears likely that anysemantic gaps introduced by using such speci�cations (e.g., in the construction of the DFDs) are13And, more generally, any useful notation. 29

www.manaraa.com

small, since the formal notations are used and manipulated without making reference to any semi-formal speci�cations at a di�erent level of development14. We also believe that the developmentpresented herein may be simpler (from this developer's point of view) and possibly shorter thanone that would arise through the use of standard structured analysis and design. One reason forthis latter suggestion is that a lot of structure text (i.e., pseudocode) does not have to be generatedbecause of the early introduction of the formal notations. Furthermore, the early introduction ofsuch notations may simplify the generation of \code" (be it pseudo- or concrete), simply because agreat deal of the code speci�cations are already present in the data diagram. Certainly, the devel-opment presented above is more rigorous than the standard SA/D process; in fact, the developmentcan be extended to make it as rigorous as desired (as we discussed earlier).We should emphasize once more that this development is not the only one possible. It shouldalso be clear that the development is not necessarily the best: it just happens to be an approachthat made sense to the author, and used the notations that best suited the problem and authorat the time of development. Other developers will have other opinions (and other methods ofdevelopment). That is to be expected; no development process or notation can be all things to allpeople. The heterogeneous approach has the ability to take all development methods and choicesof notation into account and generalize them in such a way so as to make the most exible methodand notation for any particular problem.B.2 A formal derivationWe now consider an example of a formal heterogeneous development: the process of rigorously devel-oping code from a formal heterogeneous speci�cation, using{for example{the techniques, theorems,and concepts developed in Appendix A. The particular example we consider is one of computing thenatural square root of a natural number s (see [Morg94] for a detailed examination of this problemand its solution developed with the re�nement calculus). For our notations, we use speci�cationstatements and predicates. Our development will use the re�nement relations v and (as neces-sary, and we will use the theorems of Appendix A to justify re�nement steps where needed. Wedo not present a detailed description of our algorithmic approach to solving the problem; it will besimilar to that of [Morg94], so we refer the reader there for further details.Our initial speci�cation is the speci�cation statementr : [r02 � s < (r0 + 1)2];and as in Appendix A we use the primed-unprimed variable conventions of predicative programmingfor the sake of simplicity. Our �rst re�nement will be identical to the initial step in [Morg94]:v var q : nat �q; r : [r02 � s < q02 ^ r0 + 1 = q0]:Next, setting I (an invariant) to r2 � s < q2 (and, accordingly, I 0 = r02 � s < q02), we introduce aninitialization through a sequential composition, using the law Leading Assignment of the re�nementcalculus. v frame q; r � r02 � s < q02; (i)q; r : [I; I 0 ^ r0 + 1 = q0] (ii)14In fact, the predicate parts can be viewed{if it is useful{as processes of the DFD.30

www.manaraa.com

Note that (i) is a predicate; its introduction is due to a re�nement by parts law akin to Theorem4 in Appendix A. Switching to the predicative programming notation, we can re�ne (i) (inside theframe) as follows: (i) (q0 = s + 1 ^ r0 = 0(q := s + 1; r := 0Next, we re�ne (ii), and, using the law for introducing a loop (on invariant I 0, guard q = r+1 andvariant q0 � r0) obtain:(ii) v do q 6= r+ 1!q; r : [r + 1 6= q ^ I; I 0 ^ q0 � r0 < q � r] (iii)odOnce again, the re�nement of (ii) is performed in the re�nement calculus. To re�ne (iii), weintroduce an intermediate natural variable, p, and re�ne to a sequential composition on mid = r <p0 < q (again, justi�ed by our ability to perform partwise re�nement heterogeneously):v var p : nat �frame p � (r+ 1 < q) r < p0 < q); (iv)q; r : [r < p < q ^ I; I 0 ^ q0 � r0 < q � r] (v)The �rst half of the sequential composition is easy to re�ne:(iv) (p := (q + r)� 2(where� is integer division). To re�ne (v), we introduce a selection using the appropriate re�nementcalculus law, with guard s < p2.(v) v if s < p2 ! frame q � (s < p2 ^ p < q) I 0 ^ q0 < q) (vi)[] s � p2 ! frame r � (s � p2 ^ r < p) I 0 ^ r < r0) (vii)�The �nal two re�nements are easy (in fact, in our opinion it is easier to see and prove the re�nementsin this stage of the development than when using the re�nement calculus):(vi) (q := p(vii) (r := pand thus code has been generated.It is not our claim that the previous example is shorter than that obtained through using there�nement calculus by itself. Indeed, the number of re�nement steps in both derivations is almostthe same15. It is our claim that in several cases the actual re�nements in each step are easierto see (in particular, the re�nements (iv), (vi) and (vii), amongst others). This is because wehave introduced speci�cations in the predicative notation, and in this notation the speci�cationsin question have a clear and obvious re�nement.15Also, it is not clear if it is even a reasonable metric for comparison.31

www.manaraa.com

This is not the only way the re�nement of this speci�cation could have been presented; indeed,there are a large number of di�erent approaches that could have been taken. In particular, it mightbe bene�cial to consider introducing the do-loop using the predicative notation, which has a verysimple way of handling loops (speci�cally, the invariant and variant are hidden in the recursivere�nement, and do not have to be explicitly dealt with in the re�nement law). This would of courselead to a di�erent{and possibly shorter{development.B.3 An Applied ExampleWe now consider an example of applying heterogeneous speci�cation and development in a moreapplied setting. Speci�cally, we are interested in constructing a program for use in modelling anionic equilibrium. The equilibrium in question involves Fe3+ (iron(III) ion), arsenate (AsO3�4),nitrate (NO�3), and sodium (Na+) ion. We desire to use a particular method{modelling the systemas a polynomial{to �nd the concentration of hydrogen ion in the equilibrium. Once this concentra-tion has been determined, we can then calculate the concentrations and activity coe�cients of thespecies and the ionic strength of the solution. The exact system in question (along with the namesof the hydrolysis constants we use for each reaction) are as follows. For the iron species:k1 : Fe3+ +H2O ! H+ + FeOH2+k2 : FeOH2+ +H2O ! H+ + Fe(OH)+2k3 : Fe(OH)+2 +H2O ! H+ + Fe(OH)3k4 : Fe(OH)3 +H2O ! H+ + Fe(OH)�4and for the arsenate species: k1p : H3AsO4 ! H+ +H2AsO�4k2p : H2AsO�4 ! H+ +HAsO2�4k3p : HAsO2�4 ! H+ +AsO3�4To calculate the ionic strength, U , of the solution, we use the following formula:U = 12Xi miz2i ;where mi is the molality of ion i and zi is the charge on the ion. To calculate the activity coe�cientof each species, we use the Davies equation (for each ion i):�At � zi �pU1 + 0:7797�pU :(The At factor will in general depend on the relative permittivity and the temperature.)The general modelling process will be approximately as follows. The reader should take noteof its iterative nature.� Initialize the hydrolysis and system constants for the given equilibrium from a data �le. The�le will be formatted for use with other programs, so its structure is �xed at developmenttime; thus, it may contain data which is irrelevant for our purposes.32

www.manaraa.com

� For each system observation (which consists of a temperature, a pH , a concentration of totaliron and a concentration of total arsenic), calculate the coe�cients of the polynomial model(set up so that the roots of the polynomial give the concentration of H+). Compute the rootsof the polynomial (to within a given precision). From this, determine the concentrations andactivity coe�cients of the species, and the ionic strength of the equilibrium.Since in our model we will be dealing with polynomials with real coe�cients, we realize that theroots of the polynomial may be complex. By placing an interpretation on a root as a concentrationof H+, a complex value for a root is meaningless. Thus, we will have to ensure{somehow{thatthe root-�nding process produces at least one real, positive root. In general this is impossible, butshortly we will describe how and why we can avoid the problem.We commence our speci�cation by describing a few of the data objects to be used in design.N : nata : [(N + 1) � real]root : [(N + 1) � complex]nposroots; nob : natp1; q1; cconc; eps; pH; kw : realk1;k2;k3;k4;k1p;k2p;k3p : realcFe; cAs : realIn this data dictionary, N is the degree of the polynomial (in general, we may want to allow theuser to change N when executing the program so that experimentation with the model can occur).a is a list of (real) polynomial coe�cients (the polynomial has the form xN + a1xN�1 + :: + aN).root will contain the N (complex) roots of the polynomial (root(j) has the form x + iy, wherei2 = �1 and x and y are real). We declare the arrays to be of length N + 1, since we envisioneventual implementation of the system in FORTRAN, where arrays are indexed from 1.We choose to use Bairstow's method in �nding the complex roots of the polynomial model.Previous experience has shown that Bairstow's method is reasonably well-behaved for the polyno-mials we will encounter in this application (there are many other good approaches, though they aretypically more complicated to implement). There are several reasonable ways in which we mightchoose to specify Bairstow's method in this situation:1. A direct implementation, using code from an appropriate numerical library (e.g., IMSL).Such an implementation will typically be in FORTRAN. The bene�t of this approach isthat a likely well-tested implementation can be reused. This will not be an option in alldevelopment situations, since we cannot always be assured of having a good reuse library.2. A formal speci�cation. This might then be re�ned into an implementation. There are severalformal speci�cations we can give. One might be (in Hehner's notation):xN + a1xN�1 + :::+ aN�1x+ aN =Y j : 1; ::N + 1 � (x� r0(j)) (2)where r is an N -element list of complex numbers. This can be data re�ned quite easily to aspeci�cation which uses a list that is twice as long and implements the complexes as pairs ofconsecutive reals, which is one way in which complexes can be denoted in FORTRAN.33

www.manaraa.com

The speci�cation (2) is suitably de�nitional to allow implementation using any complex root-�nding algorithm. Since we know that we want to use Bairstow's method, it seems reasonableto alter our formal speci�cation to take this information into account.Bairstow's method can be described (semiformally) as follows:Algorithm: Bairstow's method.Given: initial factors p0; q0, real coe�cients a1; ::; aN (where ai is the coe�cient of xN�i, andthe coe�cient of xN is 1.)Method:1. Calculate sequences b and c from the equations:b�1 = 0 ^ b0 = 1 ^ 8j : 1; ::N + 1 � bj = aj � bj�1 � p0 � bj�2 � qo;c�1 = 0^ c0 = 1 ^ 8j : 1; ::N + 1 � cj = bj � p0 � cj�1 � q0 � cj�2:2. Calculate the � factors from the equations:cN�2�p + cN�3�q = �bN�1(�bN�1 + cN�1)�p + cN�2�q = �bNThen, p = p0 + �p and q = q0 + �q (providing the system has a solution).3. Repeat steps 1. and 2. until �p and �q are suitably small.4. The values of p and q give us a quadratic factor, r(x) = x2 + px + q. Compute the zerosof r(x), giving us two roots of the initial polynomial. Copy the values of bi into ai for all iin order to perform synthetic division of the initial polynomial by r(x) (i.e., (x2 + px+ q)�(xN�2 + b1xN�3 + :: + bN�2) = xN + :::+ aN). Reapply the process, starting at step 1., tothe divided polynomial, substituting the values of p and q for p0 and q0 respectively. Stopthe repetition when the divided polynomial has been reduced to a constant factor.A formal speci�cation of Bairstow's method might look like the following. Note that it is muchmore detailed than our initial formal speci�cation; further, notice that the lists a; b; c; and root areall declared elsewhere. We also assume that the coe�cients have been normalized by a(1) (i.e., thecoe�cient of xN is 1:0).BAIRSTOW =�N : nat; p0; q0; eps : real; itag : nat � (var m; it : nat; d; e; f; p; q; sum; os : real � (it0 = itag ^ itag0 = 0;while (N > 0) do (if(N = 1) then root0(itag) = �a(1)^N 0 = N � 1else if(N = 2) then x2 + px+ q = (x� root0(itag+ 1))(x� root0(itag))^N 0 = N � 2else (p0 = p0 ^ q0 = q0 ^m0 = 1;while(m< it) do (b01 = a1� p ^ b02 = a2� p� b1� q ^ c01 = b01� p ^ c02 = b02� p� c01� q^8j : 3; ::N+1�b0j = aj�p�b0(j�1)�q�b0(j�2)^c0j = b0j�p�c0(j�1)�q�c0(j�2);c(N � 2)2 6= c(N � 3)� (c(N � 1)� b(N � 1))) c(N � 2)� �0p + c(N � 3)� �0q =34

www.manaraa.com

�b(N � 1)^ c(N � 1)� �0p + c(N � 2)� �0q = �bN ;p0 = p+ �p ^ q0 = q + �q ^ sum0 =j �p j + j �q j;if (m = 1) then os := sum else ok;m 6= 5 _ sum � os) (sum � eps) (x2 + px+ q = (x� root0(itag + 1))(x� root0(itag));N > 0) (8i : 1; ::N+1 � a0i = bi; itag0 = itag+1^N 0 = N � 2^m0 = it+1));m < it) m := m+ 1);m = 5 ^ sum > os) N 0 = 0 ^m0 = it+ 1)))))When we come to implement this speci�cation, we may have to reify away the use of complexnumbers into either a record structure or pairs of consecutive reals in an array. We will choose thelatter approach here, but will not present the (formal) data re�nement here.In order to demonstrate that this speci�cation determines the roots of the polynomial, we needto show that it re�nes (2), given earlier. This entails: (a) showing that BAIRSTOW terminates; and(b) that it satis�es (2). (a) is straightforward. We sketch a proof (by strong induction on N) of (b)here, by showing that BAIRSTOW establishes, for a natural itag and assuming a mapping ai = a(i),xN + a1xN�1 + :::+ aN =Y i : itag; ::itag+N � (x� root0(i)):Base case: N = 1. The polynomial is x + a1, and BAIRSTOW sets root0(itag) = �a(1). Theresult follows.Inductive hypothesis: Assume, for all N � k and coe�cients a1; ::; ak,xk + a1xk�1 + ::+ ak =Y i : itag; ::itag+ k � (x� root0(i))Inductive step (prove for N = k + 1): From BAIRSTOW, we know that x2 + px + q =(x� root0(itag))(x� root0(itag + 1)). Furthermore, from the inductive hypothesis,xk�1 + b1xk�2 + ::+ bk�1 =Y i : (itag + 2); ::(itag+ k + 1) � (x� root0(i)):But, from the de�nition of the bi's, we see that(x2 + px+ q)(xk�1 + b1xk�2 + ::+ bk�1 = xk+1 + a1xk + ::+ ak+1:Therefore,(x� root0(itag))(x� root0(itag + 1))Y i : (itag + 2); ::(itag+ k + 1) � (x� root0(i))= xk+1 + a1xk + ::+ ak+1;which implies thatY i : itag; ::itag+ (k + 1) � (x� root0(i)) = xk+1 + a1xk + ::+ ak+1;giving us our result.We have not taken precision into account here; that is an implementation issue, and must bedealt with at that time. 35

www.manaraa.com

We now consider the problem as a whole. On �rst examination, a solution to the problemat hand will likely best present itself in an iterative manner (since, among other parts, the root-�nding mechanism is iterative). This is typical of many numerical methods{since the method itselfis invariably iterative, an iterative speci�cation is invariably the best. Therefore, we choose tospecify a solution using heterogeneous Jackson process diagrams (PSDs), because we feel that thePSDs are a good graphical formalism for expressing sequential programs16. The heterogenealitywill arise through compositions of process boxes with higraph predicates, and through compositionsof structure text (developed from the PSDs) with formal speci�cations.Our initial PSD speci�cation is quite trivial, and is shown in Figure 8.
calc_concsFigure 8: Initial Jackson speci�cationWe re�ne this speci�cation by adding initialization, data access, and a loop to iterate over thenumber of observations. This is shown in Figure 9.

init_process open_files ionic_consts OBSERVATIONS *

c1 = i <= nob

calc_concsFigure 9: Adding initialization and observation loopThe loop OBSERVATIONS is the main part of the speci�cation, and since it is fairly large,we re�ne its details in a separate diagram. This elucidation is described in Figure 10. Here, wehave added heterogeneous details: a formal speci�cation describing (the structure of) our initializa-tion of the polynomial model; initialization of the quadratic factors needed for Bairstow's method;description of Bairstow's iterative method (the box BAIRSTOW in Figure 10 refers to the speci�-cation BAIRSTOW given above); calculation of the number of positive real roots (speci�cation P inFigure 10); and a speci�cation choosing the \likeliest" root out of a list of solutions (the \likeliest"root is the one that gives an H+ concentration closest to 10�pH . If there are no real positive roots,then we use 10�pH as the concentration of hydrogen ion, which typically gives good results in thissituation). Speci�cation Q in Figure 10 corresponds to choosing the \likeliest" root.From our perspective, this completes a PSD description of the system17. There are now severalways in which we could continue this development. We choose to take the following path:1. As in standard JSP, annotate the PSD blocks with process details, conditions, etcetera.Further elucidation of the PSD blocks might occur here, if we so desire.16Other developers will of course prefer di�erent notations.17Other developers might choose to add more detail, which is perfectly reasonable.36

www.manaraa.com

from OBSERVATIONS

OBS_SEQ

input_obs
precision
adj_

cAs’
= ..

cFe’
=.. output_

concs

a’(1)
= ...

nposroot
= 0

set_cconc_
to_pH

00nposroot
>= 1

check_
posroot

a’(10)
= ..

p1’=.4 q1’=iter

*.005 BAIRSTOW
P

nposroot => Q

Figure 10: OBSERVATIONS loop
37

www.manaraa.com

2. Re�ne the formal parts (e.g., Bairstow's method, etc.) either visually or textually, in orderto acquire a better understanding of system structure. These re�nements may be added tothe heterogeneous PSD if it is useful or convenient to do so.3. Generate structure text as per JSP usual, but the text for the higraph parts should be theirtext equivalents. This latter generation is a form of syntactic translation, mapping fromhigraph predicates to predicates. The mapping is described in [Paig95].4. Further re�nement and code generation may proceed, as per heterogeneous speci�cation usual.The JSP implementation process is applied to the JSP structure text parts. Implementationof the formal parts proceeds as per predicative programming usual.5. Syntactic translation of the (implemented) structure text and predicate combination into animplementation language occurs.A translation of the heterogeneous PSD into heterogeneous structure text is as follows. We omit cer-tain details (e.g., the actual values for the polynomial coe�cients, a full speci�cation of Bairstow'smethod) in order to keep the speci�cation manageable. The speci�cation BAIRSTOW is as describedearlier (in our example, N = 9).calc_concs SEQinit_process;open_files;ionic_consts;OBSERVATIONS ITER WHILE i�nobobs_seq SEQinput_obs;adj_precision;a0(1) = ::^ ::^ a0(N + 1) = 1:0;p10 = 0:40^ q10 = iter � 0:005;BAIRSTOW(N,p1,q1,eps,itag);nposroots := cj (xi : 1; ::N + 1 �Re root(i) > 0 ^ Im root(i) = 0);check_posroot SEL nposroot=0set_cconc_to_pH;check_posroot ALT nposroot�1ok;check_posroot ENDnposroot > 0) (N = 0) cconc := 10�pH)^ (N > 0) (cconc := root(i0);ensure 8j : (xk : 1; ::N + 1 �Re root(k) > 0 ^ Im root(k) = 0)�j root(i)� 10�pH j � j root(j)� 10�pH j));cFe0 = :: ^ ::^ cAs0 = :: ^ U 0 = :: ^ gAs0 = ::;output_concs;obs_seq ENDOBSERVATIONS ENDcalc_concs ENDThere are at least two ways in which development from this heterogeneous text speci�cation maynow proceed: implementing the structure text (the semiformal parts); or re�ning the predicatesinto code. Of course, both processes must occur in order to obtain an implementation. The38

www.manaraa.com

implementation of structure text can proceed as per JSP normal. Re�nement of predicates can occuras is standard for predicative programming. After code is reached (i.e., after the heterogeneousspeci�cation has been re�ned to an implementation), transliteration to a programming languagemay occur. This latter process is mainly an issue of practicality: we are quite satis�ed with aheterogeneous program as our �nal implementation, but since we will want to execute it, translationis a necessity. Of course, transliteration to an implementation language is not always trivial (issuesto be dealt with include variable declaration and implementation, precision, etcetera), but it is aconcern that is beyond our interest here. Our requirements speci�ed that FORTRAN was to bethe implementation language; we omit the actual implementation.There are other development paths which are possible once a heterogeneous PSD has beencreated:� Formalize the structure of the heterogeneous PSD and translate it into, for example, predi-cates. This will give us a structurally-operational predicate speci�cation. Development maythen proceed as per predicate normal, although a certain amount of detail (e.g., conditionsand extra formalization) will have to be added in order for translation to be complete.� Unformalize the visual predicates in Figure 10 and place PSD process boxes in their place.Development may then proceed as per JSP normal. Of course, any number of the visualpredicates (from zero to all) may be unformalized, in order to meet development constraints.This process will result in a loss of information, but it may be reduced by using techniquesdescribed elsewhere.With a heterogeneous speci�cation and development, we may adapt our development processso that it best �ts the situation at hand.B.4 ConclusionsThe main reason for us presenting such heterogeneous speci�cations is to demonstrate that notations(both formal and semiformal) can be used together{both formally and semiformally!{to constructprograms. In many cases, the decision to use multiple notations will be based on convenience:programmers may feel more comfortable using a speci�c notation for a speci�c task; a heterogeneousnotation may �t the problem or process better than a homogeneous one; and it may be easier totake nonfunctional constraints into account through the use of heterogeneous speci�cations. Thus,one of the main bene�ts of heterogeneous speci�cations is their exibility and ability to adaptto the situation at hand. Even so, whether heterogeneous developments are shorter, simpler, oreasier to understand is for the most part dependent upon the problem at hand. Indeed, there willbe many examples where homogeneous speci�cations and developments will prove more convenientthan going to the trouble and expense of heterogeneous speci�cations18. Still, it is useful{and likelyeven necessary{to know that notations can be used combinationally when necessary, for it seemslikely that development situations will arise where homogeneous notations will prove to be less thanadequate for the task at hand.References[AbLa93] M. Abadi and L. Lamport. Composing Speci�cations, ACM Trans. on ProgrammingLanguages and Systems, 15(1), January 1993.18Of course, homogeneous speci�cations are just a special case of heterogeneous speci�cations!39

www.manaraa.com

[AsCe93] E. Astesiano and M. Cerioli. Multiparadigm Speci�cation Languages: a �rst attempt atfoundations. In Proc. Semantics of Speci�cation Languages, Springer-Verlag, 1993.[Back78] R.J.R. Back.On the correctness of re�nement steps in program development, PhD thesis,Dept. of Computer Science, University of Helsinki, 1978.[Back90] R.J.R. Back. Re�nement calculus II: parallel and reactive programs. In Stepwise Re�ne-ment of Distributed Systems, LNCS 430, Springer-Verlag, 1990.[BaVo89] R.J.R. Back and J. von Wright. A Lattice-Theoretical Basis for a Speci�cation Language.In Mathematics of Program Construction, LNCS 375, Springer-Verlag, 1989.[DeMa79] T. DeMarco. Structured Analysis and System Speci�cation, Yourdon Press, 1979.[Dijk76] E.W. Dijkstra. A Discipline of Programming, Prentice-Hall, 1976.[Dijk93] E.W. Dijkstra. The Uni�cation of Three Calculi. In Program Design Calculi, Proceedingsof the NATO ASI on Program Design Calculi, Springer-Verlag, 1993.[Grie81] D. Gries. The Science of Programming, Springer-Verlag, 1981.[Gutt93] J.V. Guttag and J.J. Horning. Larch: Languages and Tools for Formal Speci�cation,Springer-Verlag, 1993.[Hail86] B. Hailpern. Multiparadigm languages and environments (guest editor's introduction toa special issue), IEEE Software, 3(1), January 1986.[HarD88] D. Harel. On Visual Formalisms, Comm. ACM, 31(5), May 1988.[HarJ90] J.S. Hares. SSADM for the Advanced Practitioner, Wiley, 1990.[HeMa88] E.C.R. Hehner and A.J. Malton. Termination Conventions and Comparative Semantics,Acta Informatica, 25 (1988).[Hehn93] E.C.R. Hehner. A Practical Theory of Programming, Springer-Verlag, 1993.[Hoar69] C.A.R. Hoare. An Axiomatic Basis for Computer Programming, Comm. ACM, 12, Oct.1969.[Hoar85] C.A.R. Hoare. Communicating Sequential Processes, Prentice-Hall, 1985.[Hoar94] C.A.R. Hoare. Uni�ed Theories of Programming, Technical Paper, Oxford ComputingLaboratory, July 1994.[Jack81] M.A. Jackson. System Development, Prentice-Hall, 1981.[Jone90] C.B. Jones. Systematic Software Development using VDM, Prentice-Hall, Second Edi-tion, 1990.[King90] S. King. Z and the re�nement calculus. In VDM '90: VDM and Z - Formal Methodsin Software Development, Third international symposium of VDM Europe, LNCS 428,Springer-Verlag, 1990.[Kron93] K. Kronl�of, ed. Method Integration: Concepts and Case Studies, Wiley, 1993.40

www.manaraa.com

[Morg94] C.C. Morgan. Programming from Speci�cations, Second Edition, Prentice-Hall, 1994.[Paig94] R.F. Paige. Formal speci�cations and theories of programming. Depth Paper, Depart-ment of Computer Science, University of Toronto, October 1994.[Paig95] R.F. Paige. Higraph-based Predicate and Heterogeneous Speci�cation, March 1995.[Part90] H.A. Partsch. Speci�cation and Transformation of Programs, Springer-Verlag, 1990.[PHG91] D.A. Penny, R.C. Holt, and M.W. Godfrey. Formal Speci�cations in Metamorphic Pro-gramming. In VDM `91: Formal Software Development Methods, Fourth InternationalSymposium of VDM Europe, LNCS 551, Springer-Verlag, 1992.[ScRo77] K. Schoman and D. Ross. Structured Analysis for requirements de�nition, IEEE Trans.on Software Engineering, 3(1), 1977.[SFD92] L.T. Semmens, R.B. France, and T.W. Docker. Integrated Structured Analysis andFormal Speci�cation Techniques, The Computer Journal 35(6), June 1992.[Spiv89] J.M. Spivey. The Z Notation: A Reference Manual, Prentice-Hall, 1989.[Ward93] N. Ward. Adding Speci�cation Constructors to the Re�nement Calculus. In Proc. FME`93: Industrial-strength Formal Methods, Springer-Verlag, 1993.[Wing90] J.M. Wing. A speci�er's introduction to formal methods. IEEE Computer, 23(9),September 1990.[WiZa92] J.M. Wing and A.M. Zaremski. Unintrusive ways to integrate formal speci�cations inpractice. In VDM `91: Formal Software Development Methods, Fourth InternationalSymposium of VDM Europe, LNCS 551, Springer-Verlag, 1992.[ZaJa93] P. Zave and M. Jackson. Conjunction as Composition, ACM Trans. on Software Engi-neering and Methodology, 2(4), October 1993.
41

